THE STRUTS FRAMEWORK

Practical Guide for Java Programmers

Bt £
ki e =
i 2
- - "k:‘ I"- E >
L NCIEE
e 13
il

The Struts Framework

Practical Guide for Java Programmers

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

Java: Practical Guide for Programmers
Zbigniew M. Sikora

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers
Gregory D. Speegle

For further information on these books and for a list of forthcoming titles,
please visit our Web site at www.mkp.com/practical.

The Struts
Framework

Practical Guide for
Java Programmers

Sue Spielman

Switchback Software LLC

®
L4

MORGAN KAUFMANN PUBLISHERS

EEEEEEEEEEEEEEEEEEEEEEEEEE

oooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
oooooooooooooooooooo

Senior Editor Rick Adams

Publishing Services Manager Edward Wade

Senior Production Editor Cheri Palmer
Developmental Editor Karyn Johnson

Cover Design Yvo Riezebos

Cover Image © Sherman/Getty Images

Text Design Side by Side Studios/Mark Ong
Composition and Illustration Windfall Software, using ZzTeX
Copyeditor Robert Fiske

Proofreader Carol Leyba

Indexer Steve Rath

Printer The Maple-Vail Book Manufacturing Group

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mkp.com

© 2003 by Elsevier Science (USA)

All rights reserved

Printed in the United States of America
07 06 05 04 03 5 4 3 21

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written
permission of the publisher.

Library of Congress Control Number: 2002108513
ISBN: 1-55860-862-1

This book is printed on acid-free paper.

You work so hard peddling up the hill that you hate to brake on the way down.
—Anonymous

For Elizabeth, who continues to be my inspiration up any hill that life
throws my way.

Struts and Enterprise Web Technologiescccc.ccoceunn.... 1
Technology SteW ... 1
JaAVASEIVEr PAgES ... 2
SEIVIBLS oo 3
Custom Tag Libraries ..o 3
XML e 4
Web and Application Servers.........ccoovvviiiiiiieei e 4
Model-View-Controllerccooeeiiiiiiiiiee e, 5
General FIOW ... 6
The MOAEI ... 7
TRE VIBW .ot e e 7
The Controller ... oo 7
Application Model ... 7
Introduction to Struts 1.1coooiiiiiiii e, 8
AV, L0}/ s To I o 9
Framework Components OVervieW.......ccccooevevvieeeveinneeeennnnn. 11
Controlling Flow with the ActionServlet Component........... 11
Working with the Model Components.............ccoeviiieeennnnnen. 12
org.apache.struts.action.ActionMappiNgccoeeeveeevveinneeeeennnnnnn. 13
org.apache.struts.action.ACtONooooeeiiiiiiiiiiiici e, 15
org.apache.struts.action.ActionForward..........c..ccooeeevviiiiiieieeennnns 15
org.apache.struts.action.ACtioNError.........ccccoevviiiiiiiiiiieee, 16
org.apache.struts.action.ActionMesSsageccoevvvvvieeeeeeennnnnnnn. 17
ViIeW COMPONENESuuiiiiiieiiiiie e 18
org.apache.struts.action.ActionFormcccoooevviiiiiiierveiieneee, 18
SUMMATY ettt e e e e e 19
Struts Development Plan ..., 21
THE PIreMISE ..ouieiiiieee e 21
Identify the Applicabilitycooviviiiiiii 22
Ten-Step Development Programccccceviveeviiiieeinnnnnnen, 23
Gather and De.ne the Application Requirements 23
De.ne and Develop Each Screen Requirement.................. 24
Determine All the Access Paths for Each Screen............... 25
De.ne the ActionMappinNgsc.ccoveviiiiiieeiiiie e, 26
Create the ACHIONFOIMS.........ooiiiiiiiie e 26
DeVvelop ACLIONS........ccoveii e 26
Develop the Application Business LogiC.............cccceeevnnenenn. 27
Create JSPS ... 27
Build the Appropriate Con.guration Files............................ 28

Build, Test, DepPIOycoovviii e, 29

010101 1= U 29

Creating and Building ACtionSc.ocoviiiieiiii e, 31
Creating an ACLIONoviiiiiie e 32
Execute Method...........oooviiiii e, 33
Execution Steps in EXECULEcvvvvviiiiviiie e, 35
When Bad Things Happen to Good Actions....................... 38

ACHONEITOIS ... e e e e 38
Declarative Exception Handlingcccooeevvviiiiiiiericiiiee e, 39
Handling TOKENS........oi i 41
Design Rules of Thumb ..o, 42
010101 1= U PP 43

Creating and Building ActionFormscccocevevviiieeecinnnnn, 45
Defining ACtIONFOIMS......cocviiiiiie e 46
ActionForm validate() method...............cooiiiiiiiiin e, 48
ActionForm reset() Methodccoooviiiiiiiiie e, 49
Design Rules of Thumb ..o, 50
Wizards, and We re Not Talking Ozccooeevviiiivennnnnnne, 51
Other Wizard Variationsc.cccccoeveiiiiiiiie e, 56
DYNAACHONFOIMMS ..ccvviiiiiie e 57
011101 1= U YRR 58

Configuring StrutsSoovveii i 59
Web.Xxml.... 59

Using Subapplications..........ooouviiiiiiii e 60
Other Initialization Parameters...........cccoevveeviiiiiiiieeeeee e, 62
Defining the Servliet Mapping..........ccooveiiiiiiinnieieei e, 63
The Welcome File LiSt.......coouiiiiiiiiciieeeee e 64
Defining the Custom Tag Libraries.........cccooeevieiiiiiiiiiciieiieeee, 65
Other EIements ..o 66
Struts-con.g.Xml.......cooviiiii 66
Defining Data SOUIMCES.......coceviiiieeieeiiir e 66
Defining FOrm BeanS.........ccovviviiii i 67
Defining Global Forwards...........ccoooieiiiiiiiii e 67
Defining ACtiON MappPingS......cccvuuuiiiiiiiiiiiire et eeeenns 68
ACHiON AIHDULES ..o 69
Controller Con.guratioNuuiieeeieiiiiie e 71
Defining @ PIUGIN........iii e 73
011101 1= U PP 74
Building Struts-Enabled JSPSccccooiiiiiiiii e, 75

Setting UP @ JSP ..o 76

Making Tags Available ..., 76

Taglib De.NItIONScovevieiiie e 77
010101 1= U /8
Working with the Struts Custom Tag Libraries 79
When Tags Throw EXCepltions..........cccveveveiiiiiiviiieeeeiieee, 80
Using Property Referencingccooovevviiiiiiiiie v, 80
Using the Struts-html Tag Libraryccccoeviiiviiiiiieiinn, 81
Using and Accessing Form-Related Tags.........cccooeevvveiiiieeeeeennn, 82
Working with Errors and Messagesccevvvvvveiiiiiieeeceiiiineeee, 84
Completed SamPle......ccoooi i 85
Using the Struts-bean Tag Library........ccccooooiiiiiiiiinnnnn. 88
USING BEAN TaAGS...uuuiiiiiiiiiiieeeeieiiie e e et e e e e et e e e e eann e e e e eennes 89
Using the Struts-logic Tag Librarycccccoovviiiiiviiiiiiiennnnnn. 91
Value COMPATISONScocviiiiiiiiiiie ettt 92
Substring Matching ... 93
Presentation LOCAtIONccuuiiiiiiiiiiiiie e 93
Collection Manipulation ... 94
Using the Struts-nested Tag Librarycccoooevvvviiiivinnne, 97
Using the Struts-template Tagscccooovvvvviiieiiiiiiccciieeeees 100
Creating Pages with Template Structurec..oooovviiiiiiiiiennnnn, 101
011101 1= U YRR 103
Internationalizing Your Struts Application............cc........... 105
However You Say It: Hello, Bon Jour, Hola, Ni Hao 105
U -8 e 106
LOCAIES ..o 106
PropertyResourceBundles..........ccccoovvviiiiiiiiiiiivciicc 107
Formatted MeSSagEeSccuvuiiiiiiiiieeeii e 109
The MessageResources Class.........cccovvvvviieiiiiiciiiiee e, 110
SUMMATY ettt e e e e e 110
Configuring, Testing, and Rolling out Your Application... 111
The WAR FIle ..o 111
Setting Up the WAR Layoutciiiiiiiiiiiii e 112
Building to Deploy ..o 113
JAr FIlES e 113
The Struts.jar File ... 114
Using Logging for Debuggingccovvveeviiiiiiiiiieieiiieeeeeienn, 114
UNIt TESHING «.oeeeieeeee e 116
Maintaining Your Applicationcccoeeveviiiiiieeiiiie e 118

Keeping Up with the JONESES...........cccvviiiiiiiiciiiiee e 118

010101 1= U 119

Additional Useful Struts Packages and Extensions.......... 121
IS e 121
Validatorcoooeii e 122
Uploading Files..........coooiiiiii e 123
CommONS ULIILIES ... 123

Bean ULIITIEScceveii e 123
COolleCtion ULIILIEScuvvviiiiie e 123
D10 =] (= ST 124
WOTKIIOW.... oo 125
Other Items of INterest..........covvvieii i, 125
SUMMATY ettt e e e e e 126
ClosiNg ThOUQGNES.....ccoveicie e 126

Appendix A Struts 1.1 UML Diagramc.c.cceeviveeeeinneennnnn, 127

Appendix B Web Resources.......c.cccccceiiiviiiiiiciei e, 129
B.1 Development TOOIScccuviveiiiiiieciiie e 129
B.2 Design Patterns.........coooi i 129
B B EJB i 129
B.4 JavaBeans ..o 130
B.5 JSP/SErVIets. ... 130
B.6 Helpful Tools and Resources.............ccooeveevieeviiieeennnnn., 130
B.7 118N ... 131
B.8 Logging and Testing.......ccocevvveiiiiiiiieeeic e, 131
B.OMVC o 131
B.10 Sample Applicationccccoiveiiiiii i, 131
B.11 Struts EXtENSIONScccvveiiiiiiiiieeeee e 131
B.12 Struts Mailing LiSt.......cc.cvviviiiiiiiiiiii e 132
B.L3 UML .cuiiiiiiii e 132
B.14 Upcoming TechnologiesS.........cccoevvvviviiviiiiiieeiieeeeeen, 132
B.L5 XML oo 132

Preface

Keeping up with the latest and greatest innovations in the high-tech industry is a job unto
itself. My purpose in writing this book is to help you come up to speed as quickly as possible
with using the Struts 1.1 framework. “Come up to speed” in this context means understanding
the architecture and the technologies involved, as well as understanding how to start building
applications. In order to accomplish all this, I need to make some basic assumptions about
you. Normally, I don’t like making assumptions about people, but in this case it’s required.
Maybe it’s better to tell you what I'm expecting from you so that you can judge for yourself
whether or not you're going to be challenged in some areas. You should know though that I'll
give you pointers to where you can get more information on a topic that might be beyond the
very specific focus of this book. The pointers are provided both in the text of the book and in
Appendix B so that you can reference them by topic.

This is a book about the Struts 1.1 framework, and the word framework is important.
Struts is not a specific technology; rather, it’s made up of a number of technologies. This makes
it more challenging for me to ensure that you understand the overall concepts of Struts as well
as its underlying technology. Therefore, I also must tell you what this book isn’t. This is not
a book to learn the fundamentals of Object-Oriented programming; it is also not a book to
learn Java. OO concepts and the Java programming language are used extensively throughout
this book. So I am assuming that you have a solid understanding of both and that you have
programmed in Java before.

The most helpful technology for you to have under your belt is JavaServer Pages. If you've
written some Servlets and Java web applications, that’s great, but this book is really for those
who are now anxious to hone their skills specific to Struts. Along the way, you will learn some
of the workings of other J2EE technologies. There are experienced programmers, newcomers
to software, and aspiring students out there. You’ll each be faced with the challenge of finding
your way through the hype and the theory to arrive at something concrete that explains, very
simply, how to go about thinking, designing, and developing a web based project using Java
and Struts. This book will help get you there.

xii Preface m

Author Approach

This book follows the 80/20 rule. You will find between its covers the information to get you
started using Struts and that helps you accomplish 80% of what you’ll need to do in application
development.

So what about the other 20%? When developing applications, it’s usually that 20% that
takes the most time. This includes using the most advanced features to solve the most difficult
problems. While I'll give you pointers and solutions to some areas that might be in that 20%,
for the most part this book is going to give you the 80% and I'll save the balance for the sequel.
I'm not saying I'll avoid some of the more complicated (or confusing) issues. It’s just that if
you find something has been left out, it is likely because my development experience said it
was a feature that fell into that 20% range.

While JSP and Servlet technology have been around for a number of years now, the
evolution of the models used has grown as more complex applications were developed. This has
been a constant challenge for developers because as applications grow, so do the complexities.
This book demonstrates ways that development can be simplified even if the development
requirements grow continually more complex. That is also the beauty of Struts: Struts solves
more complicated problems quickly and keeps them manageable.

In order to take you through as many of the Struts features as possible, and since I'm
actually a developer, and don’t just play one on TV, I decided to take a development style
approach to this book. The book uses a sample application that we will define and build
throughout. Instead of using random code snippets, most (if not all) of the code samples and
snippets that you will find are part of the sample download application. You can view, examine,
and explore all the code in the context that it lives in, not just in the two or three lines I might
use to explain or demonstrate a point. I believe this practical approach leaves you with a more
thorough understanding of not only the concepts, but also how to apply them.

Sample Application

The sample application used throughout this book can be downloaded in all its glory detail, or
gory detail, whichever you prefer. Whether this is your first application or not, you’ll find that
you can use all or only parts of this application as a starting point for your own development
projects. It is built using the JDK 1.3.1 running on Tomcat 4.0.1. While it’s not mandatory that
you download and run the application as you progress through the book, I think you will find
it incredibly helpful to do so.

Many of the available features in the Struts 1.1 release are used in this book. The sample
application uses the Apache ANT 1.4.1 build tool as the build environment. I've provided a
full and complete build.xml file with multiple targets at www.mkp.com/practical/struts. It is
possible to build, and rebuild, from all the source files provided. I've scaled the build.xml down
from real production applications I've built, but it serves well for starting your own application
development script. If you need more details on ANT you can find it at jakarta.apache.org/ant
/index.html.

B Acknowledgments Xiii

For those not familiar with Tomcat, it is the reference implementation of the JSP/Servlet
specification and can be used as a JSP container. Itis open source and it’s free. You can download
it from jakarta.apache.org/tomcat/index.html. Follow the install instructions available on the
Tomcat site. It should not take more than 10 minutes to download and install.

I've also tried to make this as close to a real application as possible without introducing
some of the more complex issues associated with development. In a real application, you typi-
cally use Enterprise JavaBeans (EJB) to implement your business logic as well as a robust data-
base.I've decided to avoid using EJBs in this book because they’re beyond the scope.I've hooked
up a sample database using MySQL (open source and free and available at www.mysqgl.com),
and have included a database script so that you can download the database, follow the install
directions off the site, and run the database install script called CdManagerDB. txt, which I've
provided at the book’s web site. This script creates the necessary table and populates it with
data so that you will be ready to hit the road running. Doing these steps will also allow you to
get more familiar with the actual setup and environment that you would probably be running
an application in.

Acknowledgments

An acknowledgments section is one of the few times that one gets to give an Oscar acceptance
like speech, so here goes. As with anything that requires much time, effort, and coffee, there
are always others behind the scenes who make a huge contribution to the final product.

I'd like to thank Jeff Donahoo at Baylor University for coming across my articles posted
on OnJava.com and liking them enough to ask me to write this book. Thanks to Karyn Johnson
and Rick Adams at Morgan Kaufmann for providing their editorial expertise. Karyn, I'm still
working on the Micheal Stipe picture. My gratitude to the technical reviewers: David McClure,
Simon Chappell, Bob Lee, Tom Marrs, Tod Nguyen, and Gradin Hammell all gave excellent
feedback and helped make this book better than it would have been without their input. Also,
thanks to the initial proposal reviewers who include David McClure, James Couball, John Raley,
Christopher Neubert, Ken Hoying, and Gregor Rayman.

Special thanks to Liz Winfeld for her outstanding job in making my technical jargon read
correctly in English, which technically is my second language after Java. Muchas gracias and
merci beaucoup to Kathy Evan and Toni Bogdon for lending their international language skills
to the download sample application. Thanks to Bill Lowe for understanding all the times I
missed cycling because I had “just one more” section I needed to finish. I would also like to
thank the many developers and committers (too numerous to list here) who contribute to the
Struts project. You should all give yourself a pat on the back for the fantastic job you do in
bringing this project to life. Thanks to Craig McClanahan for taking the time out of his busy
schedule to read this book and more important for turning his brain child into the Struts
project.

Last, and what would any Oscar speech be without this, I'd like to thank my parents for,
among other things, telling me to go into computers when I was in high school.

xiv Preface m

Let’s Get Going

Open source development in general is a moving target. I've used Struts 1.1 for the contents
of this book, but chances are that there will be more features and newer releases

. to be had while this book is in print. Fear not, your money is still well spent. I will
E"@' keep updates, comments, and corrections (if necessary) available on the Morgan

Kaufmann web site at www.mkp.com/practical/struts.

So whether you are a new developer, an experienced developer, or a technical manager
trying to figure out if Struts is for you, I hope that this book will bring Struts to life. Feel free
to contact me at my email address and let me know if you have comments or suggestions
about content, or just to let me know if the book helped you. I also suggest that if you are
going to be working with Struts, sign up for the very active Struts-Users mailing list. In fact, I
highly recommend signing up for the digest version by sending a request to struts-user-digest-
subscribe@jakarta.apache.org . This will prevent you from being overwhelmed with the amount
of email you’ll get your very first day on the list. You can find the various resources for the
mailing list at jakarta.apache.org/struts/resources.html#archives. This is really the best way to
keep up with the current happenings with the project. All that said, let’'s go have some fun
with Struts.

Sue Spielman

President/Senior Consulting Engineer
Switchback Software LLC
www.switchbacksoftware.com
sspielman@switchbacksoftware.com

chapter]

Struts and Enterprise
Web Technologies

Struts is a Java-based framework used to build web applications. It’s not a technology
unto itself. We start off by making sure that everyone is on equal footing in terms of the
technologies that we will be using. While this chapter is not code intensive, it is critical to
engender an understanding of how all the technologies involved are used and what their
purpose is.

1.1 Technology Stew

It is fairly common in today’s development environment to be working with many interrelated
technologies. Often it is necessary to have a thorough understanding of quite a few technologies
to get a job done. Sometimes just keeping up with the various specifications and the latest
happenings can be a monumental task.

The core Struts technologies are JavaServer Pages and Servlets. However, there are a few
other areas that are helpful to be up on, including

m Custom tags
= XML
m Web and application servers

I'm not going to go into the details of all these technologies, but I wanted to set the
stage with a brief description of each. Chances are that you will become involved with using
these technologies during the course of your development. If you feel that you need more
information, refer to the links provided to help you along. Figure 1.1 provides a glimpse of
how each of the technologies we are interested in fits into the big picture of web application
development. We will be talking about each of the components in detail throughout the
book.

2 Chapter 1: Struts and Enterprise Web Technologies ®

Web and/or Application Server

View Controller Model

JavaBeans

JSP XML

configuration

> files

Enterprise

JavaBeans
Custom
tag Servlets
libraries 4>
— Data
source
XML

Figure 1.1: Technology overview.

1.1.1 JavaServer Pages

JavaServer Pages (JSP) is a technology used for building web applications that serve dynamic
content. The JSPis a server-side component that is made up of static HTML or XML components,
tags that are specific to JSP, and optional snippets of Java code called scriptlets. JSP is used
as the presentation layer in n-tier web architectures to separate presentation from content. In
the Struts framework, JSPs represent the View in the Model-View-Controller design pattern we
talk about in Section 1.2. The JSP specification is an extension of the Servlet API, so it uses
and leverages the Servlet context. JSPs allow for defining objects within certain scopes. The
available scopes are page, request, session, and application. Figure 1.2 shows the availability
of an object given a particular scope. Objects are visible to their ring or any inner rings, but
not to outer rings of their defined scope.

Scope comes into play when dealing with objects such as JavaBeans, also just called
Beans. The component model for JSP technology is based on JavaBeans component ar-
chitecture. JavaBeans components are nothing but Java objects that follow a well-defined
design/naming pattern using public accessor methods for reading and mutator methods
for modifying the Beans property values. These are also called the familiar getter/setter
methods spoken so much about. We’ll see as we progress through the book how the Struts
ActionForm class is actually nothing more than a Bean. The JavaBean specification can be found
at java.sun.com/products/javabeans/.

Before you can access a Bean within a JSP page, you must identify and obtain a reference
to it. The <jsp:useBean> tag tries to obtain a reference to an instance that already exists. It

B 1.1 Technology Stew 3

Application
Session

Request

Page

Figure 1.2: JSP object scopes.

does so by using the specified ID and scope. If the Bean was created previously and placed in
a specific scope from another JSP, that instance will be used. If an instance isn’t found, then a
new instance is created. A sample JSP tag to do so might look like

<jsp:useBean id="user" class="cdmanager.user" scope="session" />

Struts makes use of Beans within its framework, so it's important to at least be familiar
with the terminology.

When a JSP is first requested from an incoming request, it is parsed into a Java source
file and then compiled into a Servlet class.

If you need more background on JSP development, see java.sun.com/products/jsp/ or
java.sun.com/products/jsp/docs.html for a tutorial.

1.1.2 Servlets

Servlets play a large role in web application development. Servlets are a Java technology-
based solution that run inside a Java Virtual Machine (JVM). Since a Servlet runs in a JVM,
it is a very portable technology. Servlets are generic server extensions that can be dynamically
loaded when needed by the web server. The common request/response paradigm that we are
all familiar with in regard to HTTP applies also to Servlets. The Java Servlet API is based on
several Java interfaces that are provided in standard Java extension (javax) packages. The APIs
are included in the servlet. jar file. The Servlet technology is mentioned because the controller
in the Struts architecture is a Servlet. Technically, since all JSPs compile into Servlets anyway,
it doesn’t hurt to understand them.

For further Servlet information, refer to java.sun.com/products/serviet/index.html or
www.servlets.com.

1.1.3 Custom Tag Libraries

JSP is the technology that strives to keep the frontend presentation separate from the middle
and backend tiers. Custom tag libraries are a powerful feature available since JSP v1.1 that

4 Chapter 1: Struts and Enterprise Web Technologies ®

advance the march to that mantra. Custom tag libraries allow the Java programmer to write
code that provides data access and other services, and they make those features available to
the JSP author in a simple-to-use XML-like fashion. The JSP author does not have to understand
any of the underlying details to complete the Action. In short, a tag library is nothing more
than a collection of custom Actions presented as tags.

Struts has five powerful custom tag libraries that are used for building interactive,
form-based web applications. There’s a very detailed chapter coming up about how to
use them in your development. If you need more information on custom tags, start with
Jjava.sun.com/products/jsp/tutorial/TagLibrariesTOC.html or jsptags.com.

1.1.4 XML

The eXtensible Markup Language (XML) is becoming, or more accurately has become, ubiquitous
in web application and web services development. It is difficult to build an application these
days without having to deal with XML. XML is used to represent structured documents and
data on the web. It consists of a set of well-formed elements. Elements are well formed
if they have both opening and closing tags and are nested properly within each other. For
example,

<cd>
<artist>Madonna</artist>
<title>Ray of Light</title>
</cd>

represents three XML tags, cd, artist, and title. It’s possible to validate XML files against a
document type declaration (DTD). The XML DTD contains or points to markup declarations
that provide a grammar for a class of documents. XML files are commonly used as configura-
tion files for various applications, and Struts is no exception. The two XML files of interest
to us in the Struts framework are web.xml, which is used for the web application config-
uration, and struts-config.xml, which is used for configuring all the actions that can be
taken by your Struts application. A subsequent chapter will look at the configuration file
setups.

For more information on XML, start with www.w3.0rg/TR/2000/REC-xml-20001006 or
www.w3schools.com/xml/default.asp.

1.1.5 Web and Application Servers

Web and application servers play a role in any web application. A web server handles the HTTP
processing while an application server handles other services. These can be container services,
such as a JSP container, or a complex handling of other web-related services such as Enterprise
JavaBean (EJB) support, or they can be transaction support. Whether you will need to use a
full-blown application server depends on how complicated your web application is. If you are
using EJBs in your development, then you need an application server that can act as an EJB
container. JBoss (www.jboss.org) is a freely available, industrial strength EJB container that

m 1.2 Model-View-Controller 5

comes bundled with Tomcat. If you are a developer who wants to use EJBs from the Action
classes and needs to evaluate EJB containers, JBoss is worth a look.

Tomcat, which is what we will be using for our development, can be run as a web server as
well as a JSP container. Tomcat is the source code basis for the official reference implementation
of the JSP/Servlet specification. The files of interest to us are the configuration files used by
the web server for our application. When using Tomcat, all web applications are placed under
the webapps directory. It is possible to just place a web archive file (WAR file) into the webapps
directory. When Tomcat starts, it checks for any new WAR files and automatically deploys
them. There is a standard directory structure that is used for WAR files (which we’ll discuss
when we go into how to deploy your application) so that the server knows what to look for to
deploy the application correctly.

The web.xml file is a configuration file that is used to specify Servlets to load for a web
application. Struts makes use of the web.xml file. Struts applications can be run in any JSP 1.1
and Servlet 2.2 compliant container. There are differences in configurations for application
servers, so if you are going to be using an application server other than Tomcat, you must
make sure that you check its documentation for information about deploying web applications.
There is a growing list of configuration instructions for various servers available on the Struts
site’s installation page link.

Another thing to note, as was mentioned earlier, is that when a JSP is accessed, it
is compiled into a Servlet. When using Tomcat, the compiled Servlets are placed in a work
subdirectory. In the work directory, you will probably see a localhost directory and then a
number of subdirectories for each web application that you have on your server. The application
we’ll be working with will be in a cdManagerSample subdirectory.

When debugging, it is always helpful to delete the work directory and let Tomcat create
it from scratch. That way you can be assured that you aren’t working with an older compiled
version of a file by accident. I've provided a deploy target in the build file for our application
that will automatically delete the work directory so that you are always starting with a clean
slate.

For more information on Tomcat, refer to jakarta.apache.org/tomcat/index.html.

1.2 Model-View-Controller

The Struts framework is very design pattern-oriented. This is good news for many developers
since working with patterns usually makes life a little easier. Not only do patterns provide clean,
proven designs, they also help the developer’s learning curve. Once you are familiar with the
pattern, it is easy to apply its concepts to various projects. The entire Struts framework is based
on the Model-View-Controller (MVC) pattern. Sometimes you might also hear this referred to
as the Model 2 approach, or MVC2, but we’ll call it MVC.

The MVC pattern is a way of taking an application and breaking it into three distinct
parts: the model, the view, and the controller. The pattern itself was originally developed to
work in the graphical user interface (GUI) space, but it is successfully used in many—actually
most—web applications. The advantage of using the MVC pattern is that there is no business or
Model-specific processing within the presentation, or view, component itself. The opposite is

6 Chapter 1: Struts and Enterprise Web Technologies ®

Controller
Request - -
Servlet Model
~
H
T DB/
T backend
P systems
View
Response =
JSP
Web
server App server

Figure 1.3: MVC pattern overview.

also true; that is, there is no presentation logic in the model and business layers. This improves
component reuse there and also improves the ability to change a layer’s implementations with
minimal effect on the other layers. This is a key point and one of the main benefits of Struts.
Let’s take a look at each component, what its responsibility is, and how it correlates to the
Struts components.

An overview of the MVC pattern’s components is shown in Figure 1.3.

An important note to be made for the aspiring (or active) architects reading this book:
if you design your MVC model components correctly, non-web clients can reuse the Model
quite easily. If you need more information about how to specifically do this, look at the J2EE
blueprints site located at java.sun.com/blueprints/enterprise/index.html. 1t will provide you
with a good patterns-oriented approach.

1.2.1 General Flow

In the MVC design pattern, the application flow is mediated by a central Controller. The
Controller delegates requests—in our case, HTTP requests—to an appropriate handler. A
handler is nothing more than the set of logic that is used to process the request. In the Struts
framework, the handlers are also called actions. The handlers are tied to a Model, and each
handler acts as an adapter, or bridge, between the request and the Model. A handler or action
typically uses one or more JavaBeans or EJBs to perform the actual business logic. The Action
gets any information out of the request necessary to perform the desired business logic and
then passes it along to the JavaBean or EJB.

The Model represents, or encapsulates, an application’s business logic or state. Control
is then usually forwarded back through the Controller. The Controller then dispatches to the
appropriate View. The forwarding can be determined by consulting a set of mappings, usually

m 1.2 Model-View-Controller 7

loaded from a database or configuration file. This provides a loose coupling between the View
and Model that can make an application significantly easier to create and maintain.

While implementing an entire MVC architecture from scratch isn’t all that simple, there
are a number of reasons to do it. One reason is to ensure a clean separation between appli-
cation layers at each tier. Sometimes it seems like overkill to implement additional objects,
like ValueObjects, to pass information between layers, but in the long run it is worthwhile.
Having a clean separation also makes it easier for development teams to divvy up roles and
responsibilities in code, not to mention that you will find your application is much easier to
maintain because as changes arise, and they always do, they will be easier to isolate without
having to redo objects. That’s the theory anyway, and if you stick to your guns, the theory can
be put into good practice.

1.2.2 The Model

If you have had the pleasure of writing your own MVC-based application, you know that it can
be quite a bit of work. With the Struts framework, you get the benefit of only having to plug in
certain pieces. For the Model, this includes writing Action classes.

Action classes provide the business logic of your application. Typically, you want to think
of Action classes as thin classes that use EJBs or Javabeans to do the actual work. The dispatch
is done from the Controller to the Action class. The dispatch is determined by using an XML-
based configuration file called struts-config.xml.

1.2.3 The View

The View consists of JSPs and a set of JSP custom tags that work in concert with the Controller
Servlet. There is no flow logic or business logic, and no model information is contained in the
View. While it isn’t required that you use any of the custom tags provided by Struts in your
JSPs, most situations will benefit from using them. Using the ActionForm (a class that we’ll go
into detail on later, but for now, it suffices to say that it’s used to pass information from JSPs
to the Model) and the tag libraries allows for a fast creation of forms for applications and also
provides a built-in mechanism to use resource files for the internationalization of screens.

1.2.4 The Controller

The controller is a Servlet that uses the Command Design pattern to dispatch incoming requests
to the appropriate Action classes. The controller Servlet, called the ActionServlet in the Struts
framework, is configured in your web server web.xml and also uses the struts-config.xml file
for determining action mappings. There actually isn’t any work that needs to be done other
than configuring the web.xml to create an instance of org.apache.struts.action.ActionServlet.
Simple enough.

1.2.5 Application Model

Before we start looking at each component in detail, we can tie all the pieces together by looking
at Figure 1.4.

8 Chapter 1: Struts and Enterprise Web Technologies ®

web . xml Struts-config.xml

Request Controller Dispatch | Business logic

(Servlet) (Action class)
Client Execute

(browser)
View Model. .

(JSP) - (data containing
Response Get application state)

Figure 1.4: Application model using Struts components.

We have an HTTP request from the client browser that creates an event. The web container
will eventually respond with an HTTP response. The Controller receives the request from the
browser and makes the decision where to send the request. The appropriate Action class is
called. The Action class uses Beans or EJBs to process the business logic and update the state
of the model. The Action class is used to help control the flow of the application.

The Model represents the state of the application. The business objects update the
application state. But instead of manipulating the Model, the Controller delegates this task
to specialized Action classes. The Model is still implemented using JavaBeans, although they
are subclasses of ActionForm, which are provided by the framework.

ActionForm Beans represent the Model state at a session (and sometimes a request level),
and not at a persistent level. Session or request level means that if the container crashes, then
the information held in the session or request is not recoverable. When using a persistent
level concerning the Model, the current state can be recovered if the container unexpectedly
has problems. A good rule of thumb is that the Model is typically going to be concerned with
session state, while the Controller will be focused more on a request state. The JSP file reads
information from the ActionForm Bean using JSP tags.

The View is simply a JSP file. In a well-designed JSP, there is no flow logic, no business
logic, and no model information—there are just tags. Tags are one of the things that make
Struts unique as a framework.

1.3 Introduction to Struts 1.1

Some of you might have already used Struts 1.0 and are looking for details on Struts 1.1. This
book (and the accompanying sample application) are based on Struts 1.1. We will be discussing
all these features in various chapters, so if you are brand new to Struts, then this probably

® 1.4 Moving On 9

won't mean much at this point. However, for those who have Struts 1.0.2 under their belts,
here’s a taste of the new enhancements minus the details. A number of new features have
been incorporated into this release, including

m Use of Jakarta Commons libraries such as BeanUtils and Logging

m DynaActionsForms for creating dynamic action forms that do not require any coding

= Multiple application support for allowing multiple struts-config.xml files to be defined
m Nested tag library for allowing a nested object hierarchy to be easily accessed from JSPs
= Plugin API for ActionServlet enhancements

®m Declarative exception handling that allows Actions to not have to worry about catching
all exceptions

If you are migrating a Struts 1.0.x application to 1.1, you should not feel much pain. Some
of the package names have changed since classes have been moved from the Struts utilities
package into the Jakarta Commons project, so you might have to adjust your existing package
or class imports. One of the nice things about Struts and the developers who contribute to the
project is that there is a high degree of backward compatibility. Even though the structure of
the web.xml and struts-config.xml files have had attribute and element adjustments, you can
still run your 1.0.x configuration files within a 1.1 environment.

1.4 Moving On

In this chapter, we grounded ourselves with the necessary technologies to start using the
Struts framework. These included JSP, Servlets, custom tag libraries, and XML. We also looked
at the role of the web application server when using Struts applications. Struts is a framework
based on the MVC design pattern. The Model components are used to maintain the state of
your application, the View components are used for communicating the Model state to the
presentation tier, and the Controller is used to coordinate the Model and View. Understanding
these basic concepts of the MVC model is important so that you can internalize why things are
done in certain ways within the Struts framework.

We should now have a baseline understanding to further our discussion. For further
information and resource pointers, you can access the web site for this book at www.mkp.com/
practical/struts.

So, with your firm understanding of the technologies involved in using Struts and a layout
of how to apply MVC to your web applications, let’s move on to how to develop aweb application
using Struts and to the details for using each of the Struts components.

chapterz

Framework Components Overview

When using an MVC model, and therefore when using the Struts framework, it becomes
difficult to talk about various components without at least garnering a familiarity with the
overall component structure. This is because inevitably we talk about one component as it
relates to another. This is one of the pleasures of working with Object-Oriented technologies.

This chapter introduces the various Struts components and briefly describes what the
purpose of each is. Keep in mind that we’ll be going into details on the classes in the component
packages in the chapters ahead, but this chapter lays the groundwork so that you can follow
subsequent chapters and be familiar with the class names and their purpose, even if we haven’t
covered the details of a particular component.

Using combinations of all the components we are about to mention is how you will build
your web applications. For a detailed look at the Struts 1.1 UML diagram, refer to Appendix A.

2.1 Controlling Flow with the ActionServlet Component

There is only one controller component in the Struts framework, and that is the org. jakarta.
struts.action.ActionServlet. The ActionServlet represents the Controller in the MVC design
pattern. Addtionally, the ActionServlet implements both the Front Controller and the Singleton
pattern. A quick and dirty description of the Front Controller pattern is that it allows for a
centralized access point for presentation-tier request handling. The Singleton pattern provides
a single instance of an object and is a good sample of a pattern within a pattern.! There is
one instance of this Servlet class per web application that receives and processes all requests
that change the state of a user’s interaction with the application. (Note: This is true of all
other singletons within Struts.) The ActionServlet instance selects and invokes an Action class
to perform the requested business logic. The Action classes don’t produce the next page of

1 recommend becoming familiar with the various J2EE patterns. Core J2EE Patterns—Best Practices and
Design Strategies by Alur, Crupi, and Malks is a must for your bookshelf.

11

12 Chapter 2: Framework Components Overview ®

the user interface directly; instead, they use the RequestDispatcher.forward() facility of the
Servlet API to pass control to an appropriate JSP in order to produce the next page of the
user interface. The RequestDispatcher object provides methods for controlling application flow
without having to actually send data back to the client. The forward() method is a server-side
transfer mechanism used to transfer control to another JSP (or Servlet for that matter).

The version of ActionServlet thatis distributed with the framework implements the logic
flow for each incoming client HTTP request. First the action is identified from the incoming
request URI that was submitted by a client browser. This URI is parsed, and the substring is
then used to select the appropriate action to invoke. The substring is used to map to the Java
class name of the corresponding Action class. If this is the first request for a particular Action
class, the class will be instantiated and will then be cached for future use by the Servlet. If an
ActionFormBean corresponding to a View page has been specified in the configuration of the
action, then the properties of that form Bean will be populated, and optionally the validate()
method will be called on the ActionFormBean. The validate() method is used, you guessed it,
to validate properties of a form. It can be used for verifying user input or to correct formatting
of form fields that appear on a JSP.

There is a method in the Action class that plays an important role, and that is the
execute() method, formerly known in the Struts 1.0.x releases as the perform() method. We’ll
talk about this method in detail when we cover Actions, but for now, the execute() method
of this Action class is called from the ActionServlet. A reference to the action mapping that
was used by the ActionServlet is passed as one of the parameters. This mapping provides
access to the ActionServlet and ServletContext, as well as to other information contained
in the mapping that can be used by the action itself. The request and response that were
passed to the controller by the servlet container are also passed into the execute() method.
These parameters ensure that the action has all the information it needs to complete its
task.

When creating your controller Servlet, if you don’t need to customize anything in
your Servlet, you can simple specify in the web.xml file an instance of org.apache.struts.
action.ActionServlet. It is also possible to override some or all of this functionality by sub-
classing this servlet and implementing your own version of the processing. The ActionServlet is
configured by parameters configured in the web.xml file. We’ll discuss the available parameters
in Chapter 6.

Figure 2.1 shows the flow of a request coming into the controller and how it is handled.

2.2 Working with the Model Components

The Min the MVC framework contains the Model components. The Model components are those
focused on keeping track of the state of your application. It is here where the business logic
specific to your application is maintained. Using classes provided in the Struts framework, it is
possible to create your own Action components. Actions are the meat of the Struts framework.
The Actions are called to perform some type of required task for the application. The Struts
package that contains classes related to Action functionality is org.apache.struts.action.
This package contains a number of classes that we will be interested in. We'll talk about

B 2.2 Working with the Model Components 13

Controller (ActionServlet) Action Business logic

Request arrives

!

ActionMapping?

Found Not found
Create ()
ActionMapping Return error

Create
ActionForm

Al
o

Yes No

Yes Execute () Perfo.rm reqwred
Valid data? business logic

Process 14 Return
ActionForward / ActionForward

Another
ActionMapping?

!

I

No

Return
response

I

Figure 2.1: Request/response activity diagram.

the Action and ActionForm classes briefly here since there are entire chapters dedicated
to them. Let’s walk though the available classes in the action package to become familiar
with them.

2.2.1 org.apache.struts.action.ActionMapping

The ActionServlet needs some mechanism to determine how to route requests to Ac-
tion classes. This is done using an ActionMapping class. The ActionMapping represents the

14 Chapter 2: Framework Components Overview ®

information that the ActionServlet knows about the mapping of a particular request to an
instance of a particular Action class. The mapping is passed to the execute() method of the
Action class, enabling access to this information directly. An example of how an action mapping
is defined in the struts-config.xml file is

<action-mappings>

<action path="/search"
type="cdmanager.actions.SearchAction"
name="searchForm"
scope="request"
input="/search.jsp">

<forward name="success" path="/display.jsp"/>
</action>
</action-mappings>

The path property is the request URI path used to select this mapping. If extension
mapping is used for the controller servlet, the extension will be stripped before comparisons
against this value are made.

The type property specifies the fully qualified Java class name of the Action implemen-
tation used by this mapping.

The name property specifies the name of the form Bean if there is one associated with this
Action.

The scope property identifies the scope that can be requested or the session that the form
Bean (if there was one specified) creates.

The input property is the context-relative path of the input form to which control should
be returned if a validation error is encountered. For example, this property is used if you have an
input form that uses validation and one of the required fields is missing. The controller needs
to know what to do when such a validation error occurs and is returned from the ActionForm.
The input property tells the controller where to proceed next.

The forward property provides Action-local names of logical ActionForward instances that
can be returned by the Action to control what does the actual presentation. The action is still
called. It is possible to specify multiple forward declarations for each action. It is likely that the
action can have multiple forward locations—each one with a complete set of parameters that
can override those of the defaults in the associated action destination. As we proceed with our
sample application, we’ll see how it is also possible to forward to other actions and not just
to JSPs. Doing so cuts down on the number of pages you have to create because it allows for
reuse of generic pages by merely changing the generic fields on the page. For example, a title
for the page can be specified in the XML for the action or by using the forward mappings. Using
forward mapping is an extremely powerful Struts feature that we’ll explore in more detail as
this book progresses.

We’'ll look at the complete set of available properties in Chapter 4. If you need to add
your own additional properties, it can be done by a subclassing ActionMapping and then by
providing appropriate public getter and setter methods.

There is also an ActionMappings class that is found in the org.apache.struts.action
package. Notice the s in ActionMappings; it indicates that it is a collection of some sort.

B 2.2 Working with the Model Components 15

In this case, the collection is a FastHashMap. The FastHashMap is a customized implemen-
tation of java.util.HashMap designed to operate in a multithreaded environment where
the majority of method calls are read-only. The ActionMappings is an implementation of a
FastHashMap. FastHashMap was part of the org.apache.struts.util package but has since been
moved to the Apache Commons project under the Collection classes, and can be found at
Jjakarta.apache.org/commons/collections.html. ActionMappings is simply used to encapsulate
a collection of ActionMapping objects that can be administered and searched. In Struts 1.1,
the collections are actually stored in regular HashMaps—with no synchronization—because the
configurations are frozen at startup time.

2.2.2 org.apache.struts.action.Action

An Action is an adapter between the contents of an incoming HTTP request and the corre-
sponding business logic that should be executed to process it. Think of each Action as the
glue between the client request and the business logic that must be performed. Actions are
usually thin classes with most of the business logic being performed in a separate JavaBean or
EJB.2 The ActionServlet selects an appropriate Action for each request, creates an instance (if
necessary), and calls the execute() method.

2.2.3 org.apache.struts.action.ActionForward

An ActionForward represents a destination that the ActionServlet might be directed to per-
form a RequestDispatcher.forward() or HttpServletResponse.sendRedirect(). Both of these
mechanisms are used to transfer control to another JSP or Servlet. The forward does so
from the server side; the sendRedirect actually sends a new URL to the client. There is a
section in Chapter 6 that discusses forward vs. redirect. Which forwarding method is used
is determined by the processing activities of an Action class. Instances of this class may
be created dynamically as necessary by the Action class, or configured in association with
an ActionMapping instance for named lookup. There are multiple potential destinations for
a particular mapping instance. The Action class determines which destination should be
used.

An ActionForward as specified in the struts-config.xml file might be defined within an
action mapping as

<forward name="success" path="/display.jsp" redirect="false"/>

The name property defines a logical name by which this instance may be looked up in
relation to a particular ActionMapping.

2The JavaBean or EJB is typically a helper class and can be considered part of a View Helpers design
pattern. The View Helpers defines helper classes (which are usually Beans, EJBs, or custom tags) that store
the View’s intermediate data model and serve as business data adapters. Encapsulating the business logic
in a helper allows for a more modular application and encourages component reuse.

16 Chapter 2: Framework Components Overview ®

The path property is the context-relative URI to which control should be forwarded, or
an absolute or relative URI to which control should be redirected.

The redirect property is set to true if the ActionServlet calls HttpServletResponse.
sendRedirect() on the associated path. If not specified, redirect will be false.

Why and when should you use a redirect? If you have finished handling a form submission
in an Action and then forward to the next page, you might notice that the URL displayed
in the web browser is the path to the previous action even though you are on a new JSP. If
the previous page had a form on it and you click the browser’s refresh button, you will be
prompted to resubmit the form, even if the new JSP doesn’t have a form on it. The way to
avoid this and have the correct URL displayed is to set redirect to true as shown in the following
example:

<forward name="success" path="/insert.jsp" redirect="true" />

There are two important points to consider when using redirect: performance (be-
cause of the extra client round trip), and the ability to use request attributes to commu-
nicate information from the Action to the JSP. In general, Struts developers are far better
off if they can train their users to simply ignore the URL shown in the browser, or if they
take additional steps—like using frames or browser windows with no location bar—to hide
it.

It is also possible to use the global-forwards section in the Struts-config.xml file. Global
forwards are used to create logical name mappings for commonly used JSPs so that you don’t
have to define the forward for each and every action mapping. A sample of the global-forwards
section looks like

<global-forwards>

<forward name="logoff" path="/logoff.do"/>
<forward name="logon" path="/logon.jsp"/>
<forward name="success" path="/mainMenu. jsp"/>

</global-forwards>

Each of the forwards defined in the global-forwards section is available through a call to
your action mapping instance, that is, actionMappingInstance.findForward("success"). Keep
in mind, local <forward> elements for the same name (nested inside an <action> element) will
override the global forward’s normal information for that action only.

As with the ActionMapping, additional properties can be provided as needed by subclasses,
and there is also an ActionForwards class that holds a collection of ActionForwards and imple-
ments the FastHashMap.

2.2.4 org.apache.struts.action.ActionError

The mechanism to return errors that occur during an ActionForm validation uses the Action-
Error class. ActionError is an encapsulation of an individual error message returned by the
validate() method of an ActionForm. The error consists of a message key thatis used to look up
the text from the appropriate message resource file. The text in the message resource file can
contain up to four placeholder objects that are used for parametric replacement in the message

B 2.2 Working with the Model Components 17

text. The placeholder objects are referenced in the message text using the same syntax used by
the JDK MessageFormat class. Thus the first placeholder is {0}, the second is {1}, etc. The collec-
tion of ActionErrors is stored in the ActionErrors class that just provides a convenient method
for accessing the ActionError stored in a java.util.HashMap. This HashMap is the accumulated
set of ActionError objects for each property, keyed by property name. If you want to know all
the fancy stuff you can do with message format strings, reference the java.text.MessageFormat
APL.

Validation errors either are global to the entire ActionForm Bean they are associated with
or are specific to a particular Bean property and the error corresponds to a specific input
field on the corresponding form. If we take a look at the validate() method in one of our
ActionForms, we see how errors are processed.

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if (
((title == null) || (title.length() < 1))
&&((artist == null)|| (artist.length() < 1))
&&((genre == null) || (genre.length() < 1))
)

errors.add("search", new ActionError("error.searchcriteria.required"));
return errors;

}

In this particular validate() method, we create an instance of ActionErrors. The collection
is empty unless our validation criteria fail. If we must add an error, we create a new in-
stance of an ActionError with the message key and add it to our collection using search as
the key. When the JSP displays the page, having the Struts <html:errors> tag placed on the
page like

<html:errors/>

will cause any errors to be displayed to the user.

2.2.5 org.apache.struts.action.ActionMessage

The ActionMessage (and ActionMessages) work exactly the same way as the ActionError (and
ActionErrors). ActionMessages are new to Struts 1.1. The difference is that an ActionMessage
can be used to pass messages that aren’t errors. This is useful when you have, for example, a
confirmation page where you want to just display a generic or informational message to the
user. Rather than having a separate JSP to forward that displays the results, you can include a
message that is displayed on the JSP. The following code could be included in an Action class:

ActionMessages actionMessages = new ActionMessages();
actionMessages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMessage("record.inserted"));
saveMessages(request,actionMessages);

18 Chapter 2: Framework Components Overview ®

Then to retrieve the message, the JSP uses the following tags. Setting the message attri-
bute to true in the <logic:messagePresent> and <html:messages> tells the tag to look for
ActionMessages instead of ActionErrors.

<logic:messagesPresent message="true">

<tr>
<html :messages id="message" message="true">
<td><bean:write name="message"/></td>
</html :messages>

</tr>

</logic:messagesPresent>

2.3 View Components

Since we are exploring the various components provided in the MVC model, we should
be fair and include all the components. The View components consist of the following:
the JSPs you create specific to your application and the ActionForm, which is an optional
JavaBean associated with a form on your JSP. The custom tag libraries provided with
Struts are also used within your JSPs and can be considered View components. One of the
many features of using the custom tag libraries is that you can repopulate fields in your
JSPs easily. However, since we spend a number of detailed chapters on the custom tag
libraries, the tag libraries are only casually mentioned here. Let’s look at the ActionForm
class.

2.3.1 org.apache.struts.action.ActionForm

For each JSP that has input data entry requirements, it is possible to have an ActionForm. An
ActionForm is a JavaBean optionally associated with one or more ActionMappings. Such a Bean
will have had its properties initialized from the corresponding request parameters before the
corresponding action’s execute() method is called.

When the properties of this Bean have been populated, but before the execute() method
of the Action is called, this Bean’s validate() method is called, which gives the Bean a chance
to verify that the properties submitted by the user are correct and valid. This is done only
if the Bean has requested validation as specified in the struts-config.xml file. If this method
finds problems, it returns an error messages object that encapsulates those problems, and the
controller servlet returns control to the corresponding input form. Otherwise, the validate()
method returns null, indicating that everything is acceptable and the corresponding Action’s
execute() method should be called.

This class must be subclassed in order to be instantiated. Subclasses should provide
property getter and setter methods for all the Bean properties they wish to expose plus
override any of the public or protected methods that they wish to provide modified func-
tionality for.

B 2.4 Summary 19

2.4 Summary

Chapter 2 has provided a glimpse at the basic components provided in the Struts frame-
work and touched on some of the tags provided in the Struts tag library. It intro-
duced the various classes provided in the Struts packages so that you can start becoming
familiar with the classes we will be working with. These include the Controller component
org.jakarta.struts.action.ActionServlet as well as numerous Model components. All the
Model components can be found in the org.jakarta.struts.action package. The View portion
of the framework contains the JSP files that a page author will write specific to an application,
the custom tag libraries, as well as to the ActionForm component. Using these components as
our groundwork, we can now examine in detail how to apply them in your web application
development. This is where the fun starts.

chapter3

Struts Development Plan

This chapter examines a sensible development plan that can be applied to most projects,
regardless of size, that use Struts. In the following pages, we will create the development plan
that this book will use to build and demonstrate each Struts component in detail.

This isn’t a “preaching from on high” development plan; it is merely a suggestion. If you
have a well-defined plan for approaching MVC model development that works for you, then
stick with it. Please note that this is not meant to define your development process. So whether
you follow the Rational Unified Process (RUP) or an Extreme Programming (XP) paradigm, or
any other methodology, it’s all good. What’s presented here is more a suggested outline of
appropriate steps to take when laying out your Struts project so that you can build applications
quickly. I call it the “Ten-Step Development Program.”

The process presented here is the one that I use in my own production development
projects, and it can be directly applied to any application using the Struts framework. I think
it will prove helpful for many readers. At the very least, it provides another point of view to
those who already have their own development plans in place. Please note that although we
are using pieces of this development program throughout the book, we will not be following it
step by step in each chapter so that the material follows a more natural flow to enhance efforts
to learn it.

3.1 The Premise

When using any technology, the first question that you should always ask yourself is “Why
should I use this technology?” Though there are any number of responses that could satis-
factorily answer this question, somewhere in the answer should be that the technology in
question solves a problem for you. What the answer should not include is that the technology
is just the next whiz-bang tech-toy getting lots of airtime, although I'm sure we're all guilty
of considering that a satisfactory reason for using a new technology at some point in our
careers.

21

22 Chapter 3: Struts Development Plan m

You might ask why any of the precious page count allowed for this book is being
used to talk about a development plan approach, and it’s a valid question. The reason we’re
talking about a plan is I'm a firm believer in not wasting time. We will walk through a
development project in order to familiarize you with the thought process and layout of
the various Struts components. Doing it in this fashion can also easily be applied to larger,
more complex projects. Breaking down the steps eliminates a lot of wasted cycles in the
learning process. It also eliminates a lot of wasted cycles in your actual development when
you start coding.

So again, as a developer, architect, or manager, when you select a technology to solve a
problem, you need to know what the problem is you're trying to solve, and you need to know
if your chosen technology is up to the task. Struts can solve a whole lot of problems; just be
sure that they are the ones you need solved. If it seems that Struts is a good solution, then I
can say without reservation that it’s a framework you should consider. But just because you
are reading this book doesn’t mean that Struts is a good fit for the project you’re thinking of
applying it to. Make sure you think that through before you start.

Remember that when dealing with any framework, there is a ramp-up time that has to be
considered, and Struts is no exception. If you do decide to use Struts, though, your ramp-up
time will be dramatically reduced—assuming that I do my job well writing this book.

3.2 Identify the Applicability

Before starting on the actual project development plan, be sure that Struts applies to your
project. If it does, you will answer the following questions with a solid yes. If more than a
couple of the answers are no or maybe, then you should reconsider if Struts is really your
best tool.

m Does this project have many screens?

m Are there a lot of interactions required from the user?
m [s it important to have flexible configuration?

® Does this application fit into the MVC model?

m Are the roles and responsibilities of the development team clearly defined?

The last question addresses a common scenario. Most development projects that I have been
a part of separate the frontend engineers from the backend engineers because they require
different skill sets. The frontend engineers are the experts at HTML, JavaScript, DHTML, etc.
The backend engineers are the people writing the Java code and interacting with the busi-
ness model. Struts allows for a clear separation of development roles and makes it easy
to split tasks between the frontend and backend teams. However, in very small develop-
ment teams, it’s not unheard of for one or two people to perform both frontend and back-
end work.

B 3.4 Gather and Define the Application Requirements 23

3.3 Ten-Step Development Program

I've broken the plan into ten logical steps. It’s acknowledged that some of the terms about to
be used might not yet be familiar to you, but hang in there. After you've had a chance to work
your way through the whole book, revisit this chapter. The light bulbs might flash brighter
after you've absorbed all the Struts internals. In the meantime, it certainly won’t hurt to get
your feet firmly placed on the ground before we dive into those internals.

First, let’s look at the steps and talk a bit more about each one and why it is important.
Then we can start to apply each to our sample project.

1. Gather and define the application requirements.

2. Define and develop each screen requirement in terms of the data collected and/or
displayed.

3. Determine all the access paths for each screen.

4. Define the ActionMappings that correlate to the application business logic.

5. Create the ActionForms with defined properties from the screen requirements (this can
include the validation portions as well).

6. Develop Actions to be called by the ActionMappings that, in turn, call the appropriate
helpers and forward to JSPs.

7. Develop the application business logic (Beans, EJBs, etc.).

8. Create JSPs to match the workflows using the ActionMappings.

9. Build the appropriate configuration files; this includes struts-config.xml and web.xml.
10. Build, test, deploy.

Let’s look at each step in more detail by referring to the specific sample application we
will use throughout this book.

3.4 Gather and Define the Application Requirements

While “gather and define the application requirements” might be a perfectly logical statement,
for those of us who live and work in the real world, it is one that is commonly overlooked
in favor of just building something . . . building anything. And this “fools rush in” approach
typically leads to building the wrong thing. It pays in both time and sanity to make the effort to
completely understand your requirements. This step works well in conjunction with Use Case
diagrams if you are creating them for your project.

The application that we’ll build in this book is a direct result of my bad memory. I have a
rather large CD music collection that currently has no organization to it. In fact, I've purchased
duplicate CDs more than once, which is embarrassing, but I did it because I didn’t realize I
already owned those CDs. So I decided to build a CD Manager application to maintain my CD

24 Chapter 3: Struts Development Plan m

collection. Truthfully, I want to demonstrate a fairly simple application that uses most (if not all)

of the Struts 1.1 features so you can see how they shine. I also have had my fill of the ubiquitous

“Hello World” and “Shopping Cart” samples. So now for something completely different.
Let’s define the requirements. The CD Manager must

® Provide a secure logon mechanism.

= Add a new CD.

m Search for a CD when given search criteria.
= Display a list of CDs.

= Logoff from the application.

This simple set of tasks helps us define our user displays, or forms, as well as the “what
has to happen when a user clicks a button,” also known as the actions. These requirements
also reveal a couple of other details. For instance, we need a way to store data. The database
interaction for this application is discussed briefly in Section 3.10. But be aware that building
a database is not the focus of this book. Refer to the book’s companion web site for details
about getting your database downloaded and set up.

3.5 Define and Develop Each Screen Requirement

After the first glance at the CD Manager, it looks like we will have four screens: logon, insert,
search, display. We don’t need a separate screen for logging off since that is just an action and
there is no additional data required to do it. But if we think this program through a bit more,
we find that we need a way to access the various functions, and so we need a Main Menu screen
as well. That makes five screens. The data required from the user for each screen is shown in
Table 3.1.

Table 3.1: Screen requirements.

Screen Data fields Type Comments
Logon Username String Editable
Password String Editable
Insert Title, Artist, Genre String Editable
Search Title, Artist, Genre String Editable
Display Title, Artist, Genre String Read-only
Main Menu None Contains only hyperlinks

to other screens including
logoff action

® 3.6 Determine All the Access Paths for Each Screen 25

3.6 Determine All the Access Paths for Each Screen

We want to define, as best we can, how each screen will be accessed. This step is helpful in
starting a logic flow for an application, especially if you are working with a large number of
screens.

In our simple application this step is easy; but in applications with a large number of
screens, looking at your screen access definitions can quickly start to remind you of a plate of
spaghetti.

While it is possible to model screen accesses using UML tools, I tend to go back to basics
with this one by using a tool that is commonly overlooked called Paperware. Write the screen
name on a Post-it note, and use a whiteboard. You can easily move the Post-its and draw lines
for the screen access. After you've got something that is workable, go back and then put it
into a project artifact, like a screen model in UML. I just find that it’s much quicker to do it
this way.

This step also helps to identify if there are any screens missing, or if there are any that
can be logically combined. By determining all screen accesses, you will be forced to think
through how the application will logically flow. More than likely, there will be adjustments
necessary at this juncture. This is a healthy point to start seeing what an application will look
like. We can start to see the layout of our screen access by the activity diagram shown in
Figure 3.1.

Display

Insert

Figure 3.1: CD Manager activity diagram.

26 Chapter 3: Struts Development Plan m

3.7 Define the ActionMappings

We can see that once we have determined how the screen accesses take place, the next logical
step is to determine what happens when the screen is actually accessed. This is where the
ActionMapping plays a role. Think of the ActionMappings as a roadmap and the Actions as
the vehicles. The ActionMappings determine the roadway to be taken by the Actions. We have
more details coming up that clarify this, so for now it’s sufficient to say that the ActionMappings
determine what twists and turns are allowed. In defining an ActionMapping, it is necessary to
determine what happens upon the successful completion, failure, or any other process that
needs to be initiated from the resulting Action class.

3.8 Create the ActionForms

Create the ActionForms with defined properties from the screen requirements (this can in-
clude the validation portions as well). All form classes in Struts extend org.apache.struts.
action.ActionForm or org.apache.struts.action.DynaActionForm. DynaActionForms are those
forms that handle dynamic definitions of properties. More of this discussion is held off until
later in the book. For now, as long as you are comfortable with the ActionForm class, everything’s
okay.

The Form class is used to correspond to the data fields on a screen. The ActionForm is
used to transfer data from a JSP and make it available in an Object form that should correlate
the data fields that we defined in step two when we developed our screen requirements.

The Form class is also used for validation of form fields. Validation can be performed
for requirement of fields, syntax of fields, or limitations of certain fields. The Setter/Getter
(accessor/mutator) methods are called automatically on an HTML form submit, thereby being
available to the Action class for future use. Usually, an ActionForm class handles all the variables
on a form and has the necessary validation for a specific screen. I tend to keep all of my Form
and Action classes in separate packages; otherwise, it can get too confusing once you get more
than a couple of screens in place.

Not every screen requires an ActionForm. In our CD Manager, we have only three Action-
Forms: Logon, Insert, and Search. Our Main Menu screen doesn’t have any fields on it other than
hyperlinks. Since we spend a chapter on ActionForms, we will go into more detail about this
there.

3.9 Develop Actions

The next step in the process is to develop the Actions necessary in our application. We can look
at information from the previous steps to define what has to happen in each Action. In fact,
the ActionMappings should tell us primarily what Actions must be constructed. Remember, the
ActionMappings are like the roadmap, so they tell us how we get from point A to point B. An
Action will take place for each situation, or activity, possible in the application. If we identify
our Actions for the CD Manager, we have

®m 3.11 Create JSPs 27

m [ogonAction. Once the user logs on, compares the username and password to those
in a database. If the username and password match, then the activity returns success;
otherwise, the result is a failure.

m JnsertAction. Takes the necessary information from the JSP and inserts a new record into
the database. If the insert is successful, then we will display a message; otherwise, a
failure will be returned.

m SearchAction. Returns the records that match given criteria. The user and what is typed
in the various fields from the JSP determine the criteria. The search action will build the
necessary criteria and issue a SQL request. Upon success, the DisplayAllAction will be
called to display the records returned in the record set.

m DisplayAllAction. Displays the current record set.

m [ogoffAction. Performs the necessary steps to log the current user off the system, includ-
ing invalidating any session information, as well as out of the session itself.

3.10 Develop the Application Business Logic

The application business logic is the core of your application. Typically, your business logic
is written as JavaBeans or Enterprise JavaBeans (EJB). The JavaBean or EJB is called from the
appropriate Action class. For our CD Manager application, I've decided not to introduce other
tangential technologies unless absolutely necessary. JavaBeans and EJBs are worth an entire
book on their own. I will note in the code where you would want to separate the logic into a
separate Bean.

I've included our business logic within JavaBeans that are called from the Action classes.
In some places, the business logic is in the Action class. When this was done, it was done purely
for the reason of keeping the application simple and making a point, not to encourage business
logic in the Actions. The business logic in our application includes the access to the database.
No groans, please. While I realize that I should point out the tier separation between the logic
and data access layers, to do so would be beyond the scope of this book and the point of the CD
Manager sample. So let’s keep it simple in order to concentrate on the Struts-specific pieces.

Sometimes it’s helpful to stub out the business logic when first putting an application
structure together. This makes it possible to actually debug the application flow first, and then
concentrate on the application business logic. In practice, this might be forcing some specific
return codes so that you can execute various code paths, but it will at least get the majority
of the debugging out of the way. Then you can fill in the blanks in each of the areas of the
business logic.

3.11 Create JSPs

Next, we identify the necessary JavaServer Pages. We do this by looking back at our workflow
and seeing what success, failure, or forward pages are necessary. This can be easily itemized

28 Chapter 3: Struts Development Plan m

Table 3.2: JSP definitions.

JSP Purpose

index.jsp User logon form, as well as the page to use when logging off
login. jsp Username/password form

mainMenu. jsp Choices available for the user to select desired action

search.jsp Provide the search criteria form

display.jsp Provide the display of the records returned from a record set
insert.jsp Provide the fields needed to insert a new record into the database

insertConf.jsp Confirm a successful insertion

by looking back at your ActionMappings that were defined in the earlier step. Since the Action-
Mappings provide the roadmap, all the roads must be defined. Each success, failure, error, or
other action that is a result of the Action class should be defined in your ActionMapping. It is
possible, and quite probable, that there will be many forwards defined from various Actions.
Most of the forwards will probably be JSP files, but it's not uncommon for actions to forward
to another Action class.

Table 3.2 shows the JSP files for our application.

3.12 Build the Appropriate Configuration Files

The (almost) last step is to build the configuration files necessary for the application. Chap-
ter 6 talks about the specifics of this, but here’s a primer. The web.xml is used by the
Servlet container to determine the configuration of the various Servlets supported on that
server. The struts-config.xml file is used by the controller servlet (as defined in the web.xml)
to declare ActionForms, ActionClasses, and the ActionMappings. It is possible to piece your
struts-config.xml file together from the various components that we’ve already been building
in our development process. This is one way to do so. In large-scale applications, however,
where there can be many screens and actions, this is very tedious.

One way to utilize development tools and make the development process more efficient
is to try to automate the process of generating the struts-config.xml file. This is done by
using another helpful open source project called XDoclet. XDoclet is a generic Java tool that
allows you to create custom Javadoc @tags. These @tags can be used to generate configuration
files, like your struts-config.xml file, from source code. XDoclet is comprised of tasks and
subtasks. <strutsconfigxml /> is a subtask of the <webdoclet /> task. Used in concert with the
ANT build file, the task parses the source directories for Action and Form classes that contain
@struts: tags and generates a struts-config.xml based on that data. For more information,
refer to XDoclet at xdoclet.sourceforge.net/ .

Another tool to consider is the Struts Console written by James Holmes. This tool lets
you visually edit your struts-config.xml file as well as convert pages such as HTM, HTML, and

®m 3.14 Summary 29

JSP to use the Struts HTML tag library for form handling. You can find the Struts Console at
www. jamesholmes.com/struts/console/.

3.13 Build, Test, Deploy

The last step is to build, test, and deploy the application. Well, I guess one could argue that
these are actually three steps, but in a utopian world, one would build, test, and deploy all in
one step. It never hurts to dream. In this step, we use our ANT build, and various testing and
logging approaches. Once we have our application debugged and tested, we deploy it on the
given server as a web archive file (WAR file). We will walk through these steps in Chapter 10.

3.14 Summary

In this chapter, we’ve seen how to apply a logical development plan to an application that
will use the Struts framework. This development plan is not intended to replace existing
development methodologies you might already be using. Instead, it is meant to focus on the
tasks that are required for building Struts applications. These steps include

1. Gather and define the application requirements.

2. Define and develop each screen requirement in terms of the data collected and/or
displayed.

3. Determine all the access paths for each screen.
4. Define the ActionMappings that correlate to the application business logic.

5. Create the ActionForms with defined properties from the screen requirements (this can
include the validation portions as well).

6. Develop Actions to be called by the ActionMappings that, in turn, call the appropriate
helpers and forward to JSPs.

7. Develop the application business logic (Beans, EJBs, etc.).

8. Create JSPs to match the workflows using the ActionMappings.

9. Build the appropriate configuration files; this includes the struts-config.xml and web.xml.
10. Build, test, deploy.

We identified our sample application as the CD Manager that we’ll use throughout the
rest of the book, and we started planning our development of that application.

chapter4

Creating and Building Actions

This chapter walks through the creation of Struts Action classes and shows how they are
used.

An Action is defined as a logical request that takes place in your web application. All
the following examples are Actions: logging on, performing a search, displaying a listing, and
logging off. Think of an Action as the pipe, or adapter, between the contents of an incoming
HTTP request and the corresponding business logic that should be executed to process the
request.

The controller (ActionServlet) will select an appropriate Action for each request based
on the ActionMappings provided in the struts-config.xml file, create an instance of the Action
(if necessary), and then call the execute() method of the Action.

It’s important to mention that when programming Actions, they must be thread-safe. Not
making them thread-safe is probably one of the most common errors programmers working
with Action classes make. The reason for this is the controller shares the same instance for
multiple simultaneous requests. This means you must be aware of the following “gotchas.”

Instance and static variables should not, I repeat, not be used to store information related
to the state of a particular request. That’s because they are accessed through object references
of the class. It’s safe to use local variables because they are created on the stack that is assigned
to each request thread. The stack is managed by the Java Virtual Machine (JVM) so there is no
need to worry about sharing local variables between threads. The following is an example of
what you should try to avoid doing by using an instance variable for a Locale object:

public final class LogonAction extends AbstActionBase {
Locale locale = null;
Public void LogonAction(){}

}
The correct way to do this would be to make locale a local variable to a method.

public final class LogonAction extends AbstActionBase {
public void LogonAction(){}

31

32 Chapter 4: Creating and Building Actions ™

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {
// This is an example of a local variable
// and would typically be followed by code as
// indicated by the ... in this sample
Locale locale=null;

Access to other resources such as JavaBeans or session variables must be synchronized
if those resources require protection. Most resource classes are generally designed to provide
their own protection when necessary, but you should be aware of all this if you are dealing
with issues surrounding synchronization.

When an Action instance is first created, the controller servlet calls setServlet() with a
non-null argument to identify the controller servlet instance to which this Action is attached.
When the controller servlet is to be shut down (or restarted), the setServlet() method is called
with a null argument that can be used to clean up any allocated resources in use by this Action.

With all this under our belt, let’s build our Logon action from scratch.

4.1 Creating an Action

For each logical request, we write an Action class. This starts by extending org.apache.struts.
action.Action.

import org.apache.struts.action.Action;
public final class LogonAction extends Action {}

While it is perfectly fine to have each of your Action classes extend the org.apache.struts.
action.Action class, I prefer to define a base Action class for the application. The reason is
that it is common to have many Actions defined in a web application. It is also typical that
these Actions have a number of methods that they all have to perform. This can vary from
application to application.

To enforce the contract between the base class and any subclasses, make the base class
abstract. Each of the classes that extends the base class must implement its own version of
the execute() method, so the execute() method in the base class is abstract, making the entire
class abstract. There are various ways you can code this.

Another way is to declare the execute() method in the base class and have it call
another abstract method, such as performAction(). Then each derived class would implement
performAction() instead. The reason you’d consider doing this is if you have some type of
logging code that is common to all Actions that you would like in your base class. Both ways

B 4.2 Execute Method 33

are perfectly acceptable—it’s really a matter of personal coding preference. I've chosen to make
the execute() method abstract in the base class, but I've also included code to demonstrate
both ways in the code download sample.

It’s typical that an Action class will work in conjunction with EJB session Beans (or just
JavaBeans).! These Beans contain the business logic for your application so that your project
maintains a clean separation of tiers. A common method that you might need in your Action
class is to get the Java Naming and Directory Interface (JNDI) context, get an instance of the
context, and then do a lookup on the given JNDI name for the EJB you are interested in to
retrieve the home interface. This is something that you can have in an Action base class.

Let’s create the Action base class that we’ll use throughout our Actions in our sample
application.

import org.apache.struts.action.Action;
public abstract class AbstActionBase extends Action{

}
Our LogonAction then becomes
public final class LogonAction extends AbstActionBase {}

We include all of our Action classes in a common package called cdmanager.actions. I like
to keep my Actions and Forms in separate packages. In a large-scale application, the number
of Actions and Forms can quickly grow. It becomes confusing to have them mixed within
the same package. I like keeping my packages clearly defined. Therefore, all of our Actions
for the CD Manager application will be in cdmanager.actions, and all the ActionForms will be
in the cdmanager.forms package. An alternative strategy common to larger applications is to
put the form Beans and actions for logical subsets of the functionality in the same package.
One advantage of doing this is that they can share package private methods without fear of
possible interference if they are declared public.

4.2 Execute Method

The method of interest in the Struts 1.1 Action class is execute(...). The execute method is
called from the controller servlet when the Action is to be executed. For those familiar with
Struts prior to the 1.1 release, the perform method was the method of interest. However, to
handle declarative exception handling (which we’ll talk about later in this chapter), the method
signature changed slightly. The perform method will still be called by the Action class for
backward compatibility, but if you are writing new applications, use the execute method.

1You should evaluate whether or not it is necessary to use EJBs in your application. Sometimes it is
appropriate to use just JavaBeans and implement a Data Access Object pattern to do so. To go into the
pros and cons of each approach would be beyond the scope of this book.

34 Chapter 4: Creating and Building Actions ™

Execute comes in two flavors.

public ActionForward execute(ActionMapping mapping,
ActionForm form,
ServletRequest request,
ServletResponse response)
throws java.lang.Exception;

and

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws java.lang.Exception;

Usually, the HttpServletRequest signature version is the one that is used by the Servlet environ-
ment. Even though we haven’t talked about the ActionForward, ActionMapping, or ActionFormin
detail yet, let’s take a minute to look at the method signature. This will give you an idea of the
type of information available in the execute method. There are more details provided about
each of these objects later on, but here’s an overview for now.

The return type of the ActionForward object tells the controller where it should forward.
Usually, this is another JSP, but it can also be to another Action.

The first parameter we see is the ActionMapping object. This is just an object representa-
tion of what is defined for this action in the struts-config.xml file. Remember that this config
file is used by the controller to determine all the attributes of an action. The ActionMapping
is provided so that if the Action itself needs to access any of the information concerning its
configuration, it can. This is also a mechanism for providing any initialization parameters that
an action might want.

The next parameter is the ActionForm. This object contains the fields that have been
declared on a JSP form. The ActionForm is a JavaBean that is also used for validation, but we’ll
talk about how that is accomplished in Chapter 5. Briefly, the ActionForm Bean is created and
populated with data relative to the current request. This is done by the ActionServlet.

The action accesses any fields that it needs to determine which business logic should
take place. For example, our LogonAction needs to get the username and password from the
Logon screen so it would do the following:

if (form !'= null){
userName = ((LogonForm) form).getUserName();
password = ((LogonForm) form).getPassword();

}

The accessor methods of the form are used to get the appropriate property. The LogonAction
can then use these variables to do a task, such as a user authentication.

The next two parameters are the HttpServletRequest and HttpServletResponse. It is quite
likely that information will be required from the incoming request. For example, we want to

B 4.3 Execution Steps in Execute 35

save an attribute in the user’s session so that we can determine if the user is currently logged
in or not. This would be done like so:

// Save our logged-in user in the session
HttpSession session = request.getSession();
session.setAttribute(Globals.USER_KEY, user);

Here we use our incoming request to get a session. If a session doesn’t already exist, then the
container will create a new one. We then set an attribute that will be used by other Actions to
check for a valid user session.

Another common approach is to route all control through an Action; let the Action check
for avalid session and then just forward to the JSP. In taking this approach, you can have a single
continue Action that can be used for any page that doesn’t require any other preprocessing.
So the Action would simply have

return mapping.findForward(Globals.CONTINUE);

Personally, I prefer to have each Action check for a valid session if it needs to, as opposed
to the latter approach of automatically routing through an authorization Action for each
request.

4.3 Execution Steps in Execute

There are some common steps that are followed in the execute method. Let’s look at what
they are.

First, there is usually a check to make sure that you are working with a current user
session. You don’t want someone to be able to bookmark a page for an Action while they are
logged into an application and come back at a later time when they are logged out. This would
be a serious security risk.

It also could happen that someone leaves their browser inactive and their session times
out. The way to avoid this type of access from happening is to have a check (another good
method for the base class) for an active session. If the session is not valid, then the request
can be forwarded back to a Logon JSP, preventing the user from accessing anything further.
In our AbstActionBase, we have an isSessionValid method to accomplish this task. The code
looks like this.

public boolean isSessionValid(HttpServletRequest request){
if (request == null) return (false);
HttpSession session = request.getSession();
if (session == null) return(false);
// Checked for a currently logged on user
User user = (User) session.getAttribute(Constants.USER_KEY);
return ((user == null) ? false : true);

36 Chapter 4: Creating and Building Actions ™

We will call this method the first step in each execute(). If we have a request, then we try to
retrieve the session from it. After making sure that we in fact have a session, we check to see if
we have a session attribute set for the USER_KEY. The USER_KEY object is set when the user logs
in. Therefore, if the attribute is not set in the session, it indicates an invalid session.

We do a quick check to see if we have a user object and return the appropriate Boolean
response. However, because we are dealing with the LogonAction in this case, we don’t want
to check for a valid session because we haven’t set it yet. If it is necessary to access various
scoped objects, it’s done now. For example, the Application object is in the ServletContext
and can be accessed from inside an Action via the ServletConfig or HttpSession.

Object attribute = getServlet().getServletContext().getAttribute("attribute_name");

You can also just define a convenient getter method in your abstract base class for this type
of requirement.

The next step typically taken is to retrieve any information, or properties, necessary
from the ActionForm. Additional validation can be accomplished if it wasn’t already done
by the ActionForm validate() method. If any errors are found, we store the error message.
This is accomplished by using the ApplicationResource file that contains message keys and
accompanying messages. We'll talk more about the ApplicationResource file when we discuss
internationalization in Chapter 9.

We store the error by adding the message key into an ActionErrors collection. Let’s look at
how we check our username/password from our LogonAction class. First, we create a collection
of ActionErrors in case we have an error occur that we need to send back to the View.

// Validate the request parameters specified by the user
ActionErrors errors = new ActionErrors();

Next we check to make sure that we have a valid ActionForm passed into the execute method.
Then we pull out the appropriate properties we are interested in. In this case, those are the
username and password.

if (form != null){
userName = ((LogonForm) form).getUserName();
password = ((LogonForm) form).getPassword();

}

Using an XML file to read as a Hashtable into a local variable database (the details of this
code are presented in the code sample download), we get the User object from the data-
base and compare the password in the database to the password entered by the user on the
logon form.

user = (User) database.get(userName);
if ((user != null) && 'user.getPassword().equals(password)){
user = null;

}

B 4.3 Execution Steps in Execute 37

If the password doesn’t match, we add an ActionError to our errors collection. We use
the ActionErrors.GLOBAL_ERROR property name marker to indicate that this is a global error and
not one related to a specific property on the form.2

if (user == null)
errors.add(ActionErrors.GLOBAL_ERROR, new ActionError("error.password.mismatch"));

}

Then we check to see if our errors collection contains any errors. If so, we call the
saveErrors method of the Action. Doing so will save the specified error message keys into
the appropriate request attribute for use by the errors custom tag. If any messages were set,
they will be displayed in the View. Otherwise, the saveErrors method ensures that the request
attribute is not created. Make sure that you include a call to saveErrors. Otherwise, if you
had errors pending to be displayed, they won’t be set. Also note that the mapping.getInput()
method call is getting the value of the input attribute as defined in the ActionMapping for this
Action so the controller knows where to forward to next.

// Report any errors we have discovered back to the original form
if (lerrors.empty()) {

saveErrors(request, errors);

return (new ActionForward(mapping.getInput()));

}

After we've determined that no errors occurred with the form properties, we can deter-
mine what necessary business logic must take place. While it is possible to do this through logic
code within the Action class, it is preferable—and is a better application design practice—to
have a business Bean handle this and then just call the appropriate method in the Bean. Doing
this better adheres to the Model separation of MVC.

In our LogonAction, our logic is not all that interesting. We want to save the user as a
session variable so that we know we have a logged-on user and can possibly log an appropriate
message to our Servlet log file. We'll talk in more detail about how to use the Logging provided
in Struts 1.1 in Chapter 11, but a simple introduction to logging is included here.

To demonstrate this simple example, I'm using the servlet.log() method. Next, depend-
ing on the results of our business logic, we might or might not need to save information into
the server-side objects. This information is used by the next page or JSP. Usually, something
is set in either the request or the session scope.

// Save our logged-in user in the session
HttpSession session = request.getSession();
session.setAttribute(Globals.USER_KEY, user);
if (servlet.getDebug() >= 1)
servlet.log("LogonAction: User [" + user.getUserName() +
"] logged on in session " + session.getId());

2The dot notation used when new’ing the ActionError is referencing the key from the ApplicationResource
file. We will discuss this in Chapter 9.

38 Chapter 4: Creating and Building Actions ™

After we've completed all the activities in our Action, the last step is to determine
what the next page—or the forward—should be. The forward uses the ActionForward ob-
ject and represents a destination to which the controller servlet might be directed to per-
form a RequestDispatcher.forward() or HttpServletResponse.sendRedirect() to another JSP.
That JSP will then be used to generate a response based on the information in the updated
Beans.

The ActionForward can be instantiated either (1) dynamically as necessary by using

new ActionForward(String path) or
new ActionForward(String path, boolean redirect)

(2) by being configured in association with an ActionMapping instance for a logical named path
lookup like

ActionForward actionForward =
mapping . findForward(Globals.FORWARD_SUCCESS);

By following this general flow, it’s possible to maintain clean Action classes.

4.4 When Bad Things Happen to Good Actions

No matter how hard we try, eventually something will go wrong. That is just a fact of life for
engineers. A good engineer will therefore always have a plan for handling exceptions. It is
highly likely that the Beans that represent the Model of your system may throw exceptions.
This can be due to problems accessing databases or other resources. It is good practice to trap
all such exceptions in the logic of the execute() method, and log them to the application log
file along with the corresponding stack trace. This can be done by calling

servlet.log("An error occurred: ", exception);

4.4.1 ActionErrors

At first glance, you might be tempted to create custom exceptions for everything that can go
wrong in the Model and then pass these exceptions through the Action class to the JSP. The
JSP can then handle exceptions by cross-referencing exception types to a message key. The
user then gets an error message in their native language. The problem with this is that you will
most likely have a large number of custom exceptions and will probably cause maintainability
issues down the road. Here’s a better approach.

In most cases, exceptions can be converted to ActionErrors and then passed back to the
View. If we think back to our MVC model, taking this approach keeps the messages and the
message keys in the Model. The controller simply transfers the data to the View to maintain
the tier separation. It’s also possible to pass the entire exception back to the View by using
a known attribute key in the request. This is exactly how the Struts JSP tags do it for the
ActionErrors. Figure 4.1 shows a sequence diagram demonstrating how an error is actually
handled.

B 4.4 When Bad Things Happen to Good Actions 39

- View - Error . ActionError . ActionErrors
| | I I
| | Some error occurred | Add to | saveErrors()
: 1 in model I‘II ActionErrors collection | performed
: -
|
|
|
| T
| |
| - | ™
| JI_ |
| Check forerrors [T~~~ """ """~ e H
— 1

T
Error displayed :
|
|
|
|

Figure 4.1: Error-handling sequence diagram.

4.4.2 Declarative Exception Handling

Another approach is to have the Actions themselves delegate exception handling to the
ActionServlet. One reason for going this route is so your Actions don’t have to think about each
and every exception that might be thrown from your business logic. It also allows exceptions
to be configured within the struts-config.xml file.

There are two ways declarative exception handling is accomplished. One is by config-
uring <global-exceptions> in the struts-config.xml file. The other is by using the exception
element of <action> that describes a mapping of an exception that may occur during Action
delegation.

The way that the exceptions are declared is very similar to the way that <global-forwards>
and <forwards> are declared. A <global-exceptions> configures the global handling of excep-
tions thrown by Actions to mappable resources using an application-relative URI path. This can
be a specific page designed to handle this exception. It is also possible to override an exception
handler declared in the global setting by using the exception element in the Action that uses
the same type attribute as defined in the global setting.

You can specify the className attribute that indicates the implementation subclass of the
standard configuration Bean. The default class is

org.apache.struts.config.ExceptionConfig

40 Chapter 4: Creating and Building Actions ™

The handler attribute is the fully qualified Java class name of the exception handler
that should handle this exception. The default is org.apache.struts.action.ExceptionHandler.
The key attribute is the message resources key specifying the error message associated
with this exception. This is helpful in keeping your errors friendly when your application is
internationalized.

The path attribute is the application-relative path of the resource to forward to if this
exception occurs. The scope attribute can be set to either "request” or "session" and indicates
where the ActionError will be made available. Last but not least is the type attribute. This is
the fully qualified Java class name of the exception to be handled. Here’s a sample.

In the struts-config.xml, we first declare our <global-exceptions> in the following
format:

<global-exceptions>
<exception key="error.required" type="org.apache.struts.util.AppException"
path="/appError.jsp"/>
</global-exceptions>

Here we are declaring that any Action (or business logic) that throws the AppException will
be sent to the appError.jsp. We are associating the error.required message string from our
ApplicationResource file with this exception. The ApplicationResource file is discussed in detail
in Chapter 9 when we talk about internationalization. If you view the mainMenu. jsp of our sample
application, there is a link to force an application exception. This makes it easier for you to
quickly force an error exception and to follow the flow in the ForceErrorAction.java file. You
can add as many <exception> elements to the <global-exceptions> as you like.
Next, we’ll look at a specific Action exception declaration.

<action path="/insert"

<exception
key="error.required"
type="cdmanager.exceptions.MissingValueException"
path="/insertError.jsp"/>
</action>

In this case, we are declaring that if the InsertAction (or business logic that is used by
the InsertAction) throws the application-specific exception MissingValueException, then send
the exception to the insertError.jsp. Note that in this example, we have defined a specific
application exception. This is helpful if you want to wrap other exceptions that might not be
as useful to the user in helping him or her understand the problem displayed. For example,
you might want to catch SQLExceptions and rethrow them as application-specific exceptions
with a more meaningful message to the user.

It is also worth pointing out that matching exceptions to exception handlers takes inheri-
tance into account (i.e., you can declare a handler for a superclass and handle all the exceptions
for subclasses of that exception class as well). The matching algorithm works identically to the
one used by the servlet container to select <error-page> matches for exceptions.

B 4.5 Handling Tokens 41

4.5 Handling Tokens

Frequently, in web applications some type of data is submitted and acted upon in the applica-
tion. A common problem is a user submitting data more than once. This can occur because the
user pressed the browser back button, pressed a submit button twice, or even had a bookmark.
There must be a way to determine that the request is a duplicate, and so there is. It’s done by
using tokens. Remember, though, that data entry forms don’t always need to use tokens. If the
form is written so that there is no state information in the session (i.e., all the data is on the
form), you can elect to let the user use the back button. But there are times, even if there is no
state information stored in the form, that you still might want to suppress multiple submits. It
really depends on the needs of your application. Applying the Synchronizer (or déja vu) Token
pattern is a strategy for addressing the problem of duplicate form submissions. Figure 4.2 is
a collaboration diagram for token interaction.

The basic idea is that a synchronizer token is set in a user’s session and then is included
with each form that is returned to the client. When that particular form is submitted by the
client, a comparison of the tokens is done in the Action class. The tokens should match the
first time the form is submitted. If a subsequent form submission is done, then the tokens will
not match and the submission is not allowed. This is what prevents the user from hitting the
browser back button and resubmitting the form. If the tokens do match, then that indicates
that things are in sync and a new Token is set in the session.3 Let’s look at how to work with
Tokens in Action classes.

There is a method provided in the Action class called isTokenValid(). The tricky part
when dealing with isTokenValid() is that the Token must exist in two different places, under

3For further information on this pattern, see Core J2EE Patterns—Best Practices and Design Strategies by
Alur, Crupi, and Malks.

Incomlntg 1: Compare Token Determine if

reques Token is valid
Action

Outgoing

response 2: Set Token in session

Figure 4.2: Token collaboration diagram.

42 Chapter 4: Creating and Building Actions ™

two different keys, in order for the call to return true. The Token must exist in the session with
a key of Action.TRANSACTION_TOKEN_KEY, and in the request (as a parameter, not an attribute)
with the key of org.apache.struts.taglib.html.Constants.TOKEN_KEY.

A call to saveToken() only puts the Token in the session. It gets put in the request as a
hidden form field by the Struts <html: form> tag if the Token is found in the session. Because it
is not possible to add a request parameter from inside an Action, the Token is not immediately
useful for controlling the flow between Actions during the same request. It is useful for
controlling the flow between user requests and Actions.

For example, you may have a page and corresponding action that allows a user to insert
a new CD into our CD Manager. The action code may look like this.

// Check for a valid token
if(isTokenValid(request)){
// If the token is value, reset it and perform the business logic

resetToken(request);
insertCd(request);
return mapping.findForward(Globals.FORWARD_SUCCESS);
}
else{
// If not valid, save a new token and forward appropriately
saveToken(request);
return mapping.findForward(Globals.FORWARD_INSERT);
}

If the Token is not found in the request, the request will go through the else block, a
Token will be saved, and the user will be directed to the appropriate page for inputting new
data about the CD. Assuming a Struts <html:form> tag is used on that page, the Token will be
added appropriately to the request. When the form is submitted, the request goes through the
if block and creates the CD. By resetting the Token here, we ensure that if the user clicks back
and tries to resubmit the form, the CD will not be re-created.

4.6 Design Rules of Thumb

We've covered a lot of ground so far in terms of Action classes, and there’s more. There are
some general design issues to remember when coding Action classes. Let’s take a look at them.

m Keep scalability in mind. Your Actions should not hold onto scarce resources (e.g., a
database connection) across requests. These types of resources should be released prior
to forwarding control to the View component. It is good practice to have finally clauses
that do these resource releases just in case your Model Bean throws an exception.?

4Finally clauses are used as part of try/catch blocks. A finally clause is always executed regardless of
whether you execute your try or catch block code. It is good coding practice to use finally clauses so that
you don’t accidentally leave resources, like database connections or files open.

B 4.7 Summary 43

® Try to refrain from Action class bloat. Keep your Actions as thin as possible by keeping
your business logic in separate Beans. Once you start embedding business logic in your
Action, it will continue to grow (sort of like what happens when you try to eat only
one Oreo cookie). Once logic is embedded in the Action class, it becomes harder to
understand and maintain—not to mention the fact that your code reuse is going down
the tubes.

= Remember not to use instance variables in your Actions. If you get the impression that
I'm trying to bang this phrase into your head, you are correct. It’s fine to have several
local methods as long as any properties needed are passed in the method signatures. The
JVM handles such properties using the stack, and so they are thread-safe.

= Try to avoid having to write custom Action classes. Using an approach where there is a
set of standard Actions that can act upon a known object type or interface drastically
reduces the number of custom Actions that must be written. A parameter containing the
type of Bean you should create can be passed to the standard Action using the parameter
property in the Action configuration. For example,

<action
path="/InsertCD"
type="cdmanager.actions.CdHelper" <-- standard action -—>
name="insertForm"
scope="request"
validate="false"
parameter="cdmanager.actions.Insert"> <-- specific business bean -->
<forward name="success" path="/InsertConf.jsp"/>
</action>

Following this approach makes it possible to write applications that hardly use any
custom Actions and allows for the business logic to reside in the business Bean where it
belongs.

Another practice worth mentioning, however obvious this might be, is how to name your
Action classes. I always find it best to name Actions by what they do rather than by what
mapping calls them. The reason for this is simple. If you name your Action class by its purpose,
then you can reuse Actions in different mappings. So when you get up to writing complex
applications that have lots and lots of Actions, your Action names will not be confusing to
other developers. Examples of this are InsertAction, LogonAction, LogoffAction, etc.

4.7 Summary

Action classes play an important role in the Struts architecture. We discussed what they are,
how to create them, how to structure the execute method, and how to handle exceptions.
We also presented a common use of Tokens and covered some basic design strategies when
using Actions. Now we turn our attention to the steps necessary to create and build our
ActionForms.

chapter 5

Creating and Building
ActionForms

This chapter walks through the creation of Struts ActionForms and Dynamic Action-
Forms, also known as DynaActionForms. The ActionForm Bean is considered part of the View
in the MVC model. While it’s frequently found that some of the properties in an Action-
Form correspond to properties in the Model, the ActionForm is used by the JSP to transfer
the state between the View and the Model components. This transfer of information is
accomplished by the ActionServlet. Within the process() method of a class used by the
ActionServlet called RequestProcessor, the instance of the ActionForm related to the Action
we are processing is populated with the appropriate information from the request parame-
ters in the incoming request. In this chapter, we also examine how to build and use these
ActionForms.

In general, you create your own ActionForm Bean class by extending org.apache.struts
.action.ActionForm. There is typically an ActionForm Bean defined for each of the input forms
in your application; however, the implementation is flexible to your application needs. You can
have either fine-grained or coarse-grained ActionForm Beans. Fine-grained objects are those that
exist where there is a separate ActionForm Bean for every input form. Coarse-grained objects
indicate that one Bean handles multiple forms. In theory, you can have one ActionForm for
your entire application, but it’s not something I recommend unless you have a very simple
application that has only one or two input forms in the first place. I suspect that since you are
using Struts, your application is a bit more complicated than that.

ActionForms are serializable. In Struts 1.0.2, this was not the case. There were two nonse-
rializable instance variables (servlet and multipartRequestHandler) that were made transient
to enable serialization. Explicitly making something transient by using the transient keyword
modifier indicates that a field is not part of an object’s persistent state. Keep in mind that if
you do serialize and deserialize such instances of your ActionForm, these two properties must
be explicitly reset, or you might get unexpected and unwanted results.

45

46 Chapter 5: Creating and Building ActionForms &

1. Process request.

2. Create ActionForm specified
in ActionMapping.

Incoming
request

Parameters ActionForm

3. Retrieve parameters from request and
call appropriate setter method in ActionForm.
Call validate() if required.

4. Call execute() with
instance of ActionForm.

Action ActionForm

Figure 5.1: ActionForm population.

5.1 Defining ActionForms

ActionForm Beans are defined in the struts-config.xml file like so:

<form-beans>
<form-bean name="searchForm" type="cdmanager.forms.SearchForm"/>
</form-beans>

You typically have multiple <form-bean> definitions. The name attribute indicates the logical
name of the form to be used by Actions. The type attribute is the relative path of the class that
will be instantiated when the ActionForm is created.

As a JavaBean, an ActionForm will have only property getter and property setter methods
for input fields contained on a form. There is no business logic contained in an ActionForm. One
of the main features of the ActionFormis to perform validation prior to the Action’s execute()
method being called. Figure 5.1 gives an overview of how the request information actually
makes it into the ActionForm. Take a look and then we’ll examine the steps involved in more
detail.

The ActionServlet takes the following steps:

First, the ActionServlet checks the user’s session to see if an instance of the ActionForm
already exists. A new Bean will be created if none exists, and the new Bean will be added to the
user’s session.

To determine if the Bean already exists, a lookup is performed using the appropriate key.
Using the attribute property in an ActionMapping specifies the key. The attribute is the name
of the request scope or session scope attribute under which our form Bean is accessed. This is
used if the attribute is something other than the Bean’s specified name. Let’s look at a simple
code example to demonstrate.

<action-mappings>
<action path="/search"

B 5.1 Defining ActionForms 47

type="cdmanager.actions.SearchAction"
name="searchForm"
attribute="myForm"
scope="request"
input="/search.jsp">

<forward name="success" path="/display.jsp"/>

</action>
</action-mappings>

In this case, the ActionForm is created by looking up the logical name as defined in the form
Bean definitions using the name property searchForm. The instance of the class is saved in the
session or request (depending on the scope) under the myForm key.

The next step is that the request parameters are examined. For each request parameter
that has a corresponding named property in the Bean, the setter method is called. This is accom-
plished using a combination of RequestUtils, found in the org.apache.struts.util package,
and BeanUtils, found in the Jakarta Commons project in the org.apache.commons.beanutils
package. The BeanUtils class used to be part of the Struts project, but because of its use-
fulness to other projects, it has been moved to the Commons project. The BeanUtils pro-
vides an easy-to-use wrapper around the more complicated Reflection and Introspection
Java APIs.

The corresponding name must be an exact match, case and all. What this translates to is
that the names specified as your form fields in your input forms must be declared the same
as those in your ActionForm properties. If you find that you have a form field that isn’t being
populated, first check that the name in your form matches that in your ActionForm class. For
those who are familiar with JSP technology, this automatic property population acts the same
way as if you used <jsp:setProperty properties="*"/>.If you need more detail about how the
setProperty works, see Section 4.2 in the JSP 1.2 specification.

If the validation is turned on once the properties are set, then the validate() method of
the ActionForm is called. The validate() method is used to validate any necessary fields prior
to the Action’s execute() method being called by the ActionServlet. Think of the validate()
method as a barrier between your form and its action. If the validation fails, then the request
never makes it to the Action for processing. If the validation succeeds, then the updated
ActionForm Bean is passed as a parameter to the appropriate Action class in the execute()
method signature. The Action class can then pull out whatever information is necessary from
the ActionForm.

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception {

String title = ((SearchForm) form).getTitle();
String artist = ((SearchForm) form).getArtist();

48 Chapter 5: Creating and Building ActionForms &

5.2 ActionForm validate() method

The validate() method is used by the ActionForm to perform any required validation on input
fields that have been submitted. Whether or not the validate() method is called is determined
by what is specified in the ActionMapping definition. When the validate property is set to “true,”
then the validate() method of the ActionForm will be called by the ActionServlet. If validate
is not specified, then the execute() method of the Action class is called. The validate property
is specified as shown in this action snippet taken from the struts-config.xml.

<action path="/insert"
type="cdmanager.actions.InsertAction"
name="insertForm"
scope="request"
input="/insert.jsp"
validate="true">
<forward name="success" path="/insertConf.jsp"/>
</action>

If validate is set to “true,” the appropriate validate method will be called. Two method
signatures are available.

public ActionErrors validate(ActionMapping mapping,
javax.servlet.http.HttpServletRequest request)

and

public ActionErrors validate(ActionMapping mapping,
javax.servlet.ServletRequest request)

The first one is used for HTTP requests; the second for non-HTTP requests. Usually, the
HttpServletRequest version is what you’ll be interested in. The parameters provide information
on the mapping used to select this ActionForm instance and the current request. When the
method is called, any validation necessary can be performed. This usually consists of checking
for required fields and/or by doing pattern checking for valid data, such as an email address or
a phone number. If we look at the ActionForm example that corresponds to our Logon screen,
the validate() method is as follows:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if ((username == null) | | (username.length() < 1))
errors.add("username”, new ActionError("error.username.required"));
if ((password == null) | | (password.length() < 1))

errors.add("password", new ActionError("error.password.required"));

return errors,;

B 5.3 ActionForm reset() Method 49

Here we are using the HttpServletRequest signature version. First, we create our errors
collection to be used for the return Object. An empty collection, or a null value, indicates that no
errors have occurred and tells the ActionServlet to call the Action’s execute () method. For our
Logon screen, we are requiring both a username and a password, so we check for both. If either
is missing, we generate an ActionError and set the property in that error to the appropriate
field. Upon returning the ActionErrors collection, any errors encountered are displayed next
to the appropriate field.

The default implementation of validate() performs no validation and returns null. When
you create your ActionForm class, it can be subclassed from ActionForm as shown.

public final class InsertForm extends ActionForm { ... }

The validate() method must override the default to provide any validation necessary.
While it is possible to have an ActionForm base class similar to our Action base class, I haven’t
found a good enough reason for it. Usually, the validation is specific to a particular form, and
it is rarely the case that there is a form field on every form you are dealing with in a web
application.

5.3 ActionForm reset() Method

In addition to the validate() method in each ActionForm, there is also a reset() method
available. The reset() method also comes in two flavors, the HttpServletRequest and the
ServletRequest version. Here we have the HttpServletRequest version.

public void reset(ActionMapping mapping,
javax.servlet.http.HttpServletRequest request)

The reset() method is also called by the ActionServlet. The first thing that occurs after
the ActionServlet obtains the form instance is that the reset() method is called. The purpose
of this is to reset all the Bean properties to their default values. This method is called before the
properties (based on the incoming request) are repopulated by the ActionServlet. The default
values specified in your Bean can be used to prepopulate a form so that fields appear the way
you want them to when the form is displayed to the user. The instance of the form used is
determined by the scope property in the action mapping.

<action path="/insert"
type="cdmanager.actions.InsertAction"
name="insertForm"
scope="request"
input="/insert.jsp"
validate="true">
<forward name="success" path="/insertConf.jsp"/>
</action>

Remember that if you have a session scope form instance, you get the same instance
if one exists already for that session. The scope of your Bean really is determined by your
needs. For example, a form that is a set of criteria used for performing a search might be

50 Chapter 5: Creating and Building ActionForms ™

useful within a session. If your scope is set to “request,” then every time you go to the page
that has the search criteria, a new ActionForm instance is created. In this case, you want
to persist your ActionForm between requests in the same session. To solve this quandary,
change the scope from “request” to “session,” and the ActionServlet will use the appropriate
instance.

<action path="/insert"
type="cdmanager.actions.InsertAction"
name="insertForm"
scope="session"
input="/insert.jsp"
validate="true">

<forward name="success" path="/insertConf.jsp"/>

</action>

A request scope form will cause the form instance to be created per request. Even
though this might seem obvious, it’'s worth mentioning because if you have values that you are
expecting to be available and they aren’t, you'll need to check your scope settings.

As with the validate() method, the default implementation of reset() doesn’t perform
any logic. When you create your subclassed ActionForm, you must override this method accord-
ingly. To follow through our LogonForm example, the reset method reads as follows:

public void reset(ActionMapping mapping, HttpServletRequest request) {
this.username = null;
this.password = null;

}

There isn’t too much magic required in the reset() method. Just remember to handle all
the properties on your form; otherwise, you might have values in your properties that aren’t
what you expect.

5.4 Design Rules of Thumb

There are a couple of design rules that can be used when creating ActionForms. First, remember
it isn’t mandatory even to have an ActionForm Bean. If there is no user data interaction being
displayed in the browser, or you don’t need any data validated, there is no need to create an
accompanying ActionForm. When the action is dispatched from the ActionServlet, a null value
will be passed for the ActionForm parameter.

When creating ActionForm Beans, there should be no business logic involved. The Bean
should contain only the getter/setter methods for the properties. These are very simple classes
to write. For each input field on a form, there should be an accompanying getXxx() and setXxx()
method.

It is not necessary to have a one-to-one relationship between your user forms on a JSP
and your ActionForms. It is common to have multiple user forms span over many JSPs. We will
walk through a wizard sample in just a moment to demonstrate this.

B 5.5 Wizards, and We're Not Talking Oz 51

A wizard scenario is one where the user enters some information and then proceeds to
the next step, like in a shopping cart checkout. The preferred way to implement this is to define
a single ActionForm Bean that contains all the properties for all the fields. It is irrelevant which
page the fields are actually displayed on. Using this type of design keeps the application simpler.
There will only need to be one Action that can handle the various screen forms. It also makes the
application more maintainable. Regardless of how the fields are arranged, changed, or added
onto the forms, the ActionForm and Action will need to be changed in only one place, if at all.
If you have Boolean properties in your form Bean, which are typically rendered as checkboxes,
you must set the corresponding instance variables to false in the reset () method. Also, if your
form fields reflect non-String objects like int or Date, the form Bean property should still be a
String. This is important so that a validation error caused by invalid characters will redisplay
what the user actually typed, thus meeting the expectation of being able to fix what was wrong
without retyping everything.

5.5 Wizards, and We’re Not Talking Oz

It is quite common in web applications to have input data that spans multiple pages. I'm
sure you have experienced a wizard-like page. A shopping cart checkout, as mentioned, or
a registration where you have to enter various data and then click a next button are two good
examples. Let’s walk through a sample implementation of a wizard structure in Struts, and
while we do, keep in mind that there are a number of ways to implement wizards. The sample
provided uses one JSP for simplicity’s sake, but the following points are worth noting. It’s
possible to implement wizards as separate JSP files and for longer wizards. Having separate
JSPs makes maintenance easier, especially if you need to change the sequences because the
business rules change.

If you have separate JSPs, they can all still use the same ActionForm by having the
appropriate hidden fields. To help avoid strange back-button scenarios, a custom tag designed
to perform page number checking can be added to the top of each page that would forward to
the appropriate page if necessary.

For instance, it is possible to store the ActionForm in the session (which is a simple ap-
proach), but it doesn’t scale as well doing it this way. And as the session grows, it becomes
expensive to maintain. Another reason not to take this approach (depending on how compli-
cated your application server environment is) is that you might have to worry about having
multiple application server support for fail-over. It can be argued that the application server will
usually provide a mechanism for handling this, but it is a point worth considering. While there
are other ways to implement wizards, the way I'll demonstrate is fairly simple and should work
for most situations. If you are doing more complicated workflow logic, it probably is worth-
while to check out the Struts workflow extension written by Matthias Bauer that is found at
www.livinglogic.de/Struts/.

We'll walk through a two-step wizard. You'll get the idea of what needs to be done,
and then you can easily expand this to be an n-step wizard as your application requires.
When allowing for wizard-type functionality, usually you want the user to navigate with a

52 Chapter 5: Creating and Building ActionForms ™

next-previous button layout on the form, not by using the browser back or forward buttons.
One of the key reasons for using a wizard structure is the requirement that state must be
maintained across pages without the use of the session or other types of persistence, such as
storing and retrieving information from a database.

We want to design our wizard so that we use the same JSP and Action class for each
step in the process. This is accomplished by using different Struts custom tags, specifi-
cally <logic:equal>, to identify which portion of the JSP is of interest. We’ll add a wizard
to our CD Manager that allows us to enter a title and artist and then complete a review of
that CD.

So, we have the following steps:

1. Enter CD title and artist.

2. Complete CD review and submit.
The ActionForm contains the following:

public final class WizardForm extends ActionForm {

private String title = null;
private String artist = null;
private String review = null;
private String currentStep = "1";
private String action = null;

// Respective getters/setters/reset/validate methods

}

The title, artist, and review are the various fields that will appear in a particular form.
We are only using one ActionForm; therefore all the fields are contained in the WizardForm even
if you use multiple JSPs. The currentStep is used to determine which step in the wizard we
are processing. The action is used to determine which button has been pushed on the Submit.
Since we can have multiple buttons per form (e.g., previous, next, done), we need to be able to
distinguish them.

Remember, we want to use a request scope for our ActionForm. By using a request scope,
a new ActionForm is created for each request. While there is a slight overhead to creating a
new instance each time, it is less than having to pass a loaded session around in an application
server. To accomplish the goal of having the ActionFormin request scope, it is important to have
all the input fields for each page in the wizard suite included on every page. However, the fields
that are not being displayed on the current page will use the Struts <html:hidden> custom tag
instead of <html:text> tag, or whatever your input field is. By including the <html :hidden> tag,
the ActionForm Bean fields will persist from step to step. This also allows use of the previous-
next buttons on the form.

Let’s look at the sample components to get the wizard working. In our struts-config.xml
file, we configure our required forms and actions as

<form-bean name="wizardForm" type="cdmanager.forms.WizardForm"/>

B 5.5 Wizards, and We're Not Talking Oz 53

First, we define our form Bean. Next we define our action mapping.

<action path="/wizard"
type="cdmanager.actions.WizardAction"
name="wizardForm"
scope="request"
validate="true"
input="/wizard.jsp">
<forward name="next" path="/wizard.jsp"/>
<forward name="success" path="/wizarddone.jsp"/>
</action>

Notice that the scope of the wizardFormis set to “request” causing a new form to be created
for each request. We will be using validation on this wizard to demonstrate how to validate
only certain fields. The input property defines what JSP should be displayed if an error occurs
during validation. We have two forward mappings—one if the next button is pressed, and one
that is used when the wizard is completed. The reason we always use wizard. jsp for the “next”
forward is we are only working with one JSP file. It is possible to have more than one JSP, and
you would handle your forwards accordingly.

Next, let’s examine the contents of our JSP and comment on each section. For the complete
JSP file, reference the wizard. jsp file contained in the sample application download.

<html:form action="/wizard">

Our form will be submitted to the wizard action that we just defined in our struts-
config.xml. Next, we will use various Struts custom tags (full details on the tags will be
discussed in Chapter 8), to determine what step in our wizard we are working on. This is
what the currentStep property is used for.

<l—
Set up for step 1
Note that we set Step 1 as the default in the ActionForms step property
-—>
<logic:equal name="wizardForm" property="currentStep"
scope="request" value="1">

If we are on step 1, then we set our hidden properties accordingly so that they will be set in
the new ActionForm that is created for this request. We only set properties to hidden if they
will not be displayed on the current page.

<html:hidden property="currentStep" value="1"/>
<html:hidden property="review" />

Next, we set up the fields that will be visible on this page. We have the artist and title fields,
along with the next button. Notice that the property of the <html:submit> is set to “action.”
This is so we can have a common property for all buttons and simply determine which one was
pressed by checking the value. The value is defined using the <bean:message> custom tag so that
all of our labels come from the application resource file and can be easily internationalized.
When a button is pressed, the action on the form is executed.

54 Chapter 5: Creating and Building ActionForms ™

<table>
<tr>
<th align="left"><bean:message key="prompt.artist"/></th>
<td> <html:text property="artist"
size="25" maxlength="25"/>
</td>
</tr>
<tr>

<th align="left"><bean:message key="prompt.title"/></th>
<td> <html:text property="title"
size="25" maxlength="25"/>
</td>
</tr>
<tr><td></td><td align="right">
<html:submit property="action" >
<bean:message key="button.next"/>
</html : submit>
</td>
</tr>
</table>
</logic:equal>

Continuing through our JSP, we have another <logic:equal> tag. We use the logic tags
to determine which of the fields are to be displayed. If our currentStep is set to “2,” then we
will display the second page in the wizard. We have the various hidden fields that won’t be
displayed, but we still want to have the information passed to the WizardForm.

On the second page of the wizard, we simply display a textarea that is used to enter a
commentary for the CD review. Notice our submit button still has the property of “action,” but
the value is not that of the done button. Again, we're just demonstrating a simple two-step
wizard; if you had more steps, you would simply use a next-previous button structure and
continue to set your currentStep accordingly.

<!—- Step two ——>
<logic:equal name="wizardForm" property="currentStep"
scope="request" value="2">
<html:hidden property="artist" />
<html:hidden property="title" />
<html:hidden property="currentStep" value="2" />
<table>
<tr>
<th align="left"><bean:message key="prompt.review"/></th>
<td><html:textarea property="review"
rows="10" />
</td>
</tr>
<tr>
<td align="right">
<html:submit property="action" >
<bean:message key="button.previous"/>
</html:submit></td>
<td align="left">

B 5.5 Wizards, and We're Not Talking Oz 55

<html:submit property="action" >
<bean:message key="button.done"/>
</html:submit>
</td>
</table>
</logic:equal>
</html:form>

Since we have validation set to “true” in the action mapping that we looked at in our
struts-config.xml, let’s briefly look at the validation() method. By checking to see what
the currentStep is set to, we can determine the fields requiring validation for a particu-
lar step.

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request) {

ActionErrors errors = new ActionErrors();
if (currentStep.equals("1")) {
if (((title == null) | | (title.length() < 1)))
errors.add("title", new ActionError("error.title.required"));
if(((artist == null)| | (artist.length() < 1)))
errors.add("artist", new ActionError("error.artist.required"));
} else if ((review == null) | | (review.length() <1)){
errors.add("review", new ActionError("error.review.required"));

}

return errors,

}

When one of the submit buttons is pressed on the displayed page, the WizardAction is
called. The code of most interest to us looks like what follows. I'm going to comment on the
code section by section.

First, we create our errors collection, and retrieve our form instance that is passed into
our execute() method.

ActionErrors errors = new ActionErrors();
WizardForm wizardForm = (WizardForm)form;

Next we check to see what step in the wizard we are up to and which button was
pressed by retrieving the action property value. We retrieve the comparison value using
messages.getMessage(), which will look up the key from the ApplicationResource file. This
way the comparison will be correct regardless of the locale being used. When the appropriate
forward is determined, the ForwardMapping is returned.

if (wizardForm.getCurrentStep().equals("1") &&
(wizardForm.getAction().equals(messages.getMessage("button.next")))){
wizardForm.setCurrentStep("2");
return (mapping.findForward("next"));

56 Chapter 5: Creating and Building ActionForms ™

if (wizardForm.getCurrentStep().equals("2") &&
(wizardForm.getAction().equals(messages.getMessage("button.done")))){
return (mapping.findForward(Globals.FORWARD_SUCCESS));
}else {
wizardForm.setCurrentStep("1");
return (mapping.findForward("next"));

}

The key point is that the currentStep is being set to the correct value in the wizardForm and
will be set as a hidden value. The <logic:equal> tags in the JSP will use that value to determine
which is the correct page to display. In this sample, we have only two forms in the wizard, but
it is quite simple to extend this to however many forms you are dealing with.

Using this basic format, you are able to create more complicated wizard functionality
that is cleanly implemented.

5.6 Other Wizard Variations

While the approach we just talked about should work in most situations, here are a few other
ideas that you might find useful.

If you have different actions, for instance, an “insert, update, delete,” and you want to
associate different validations with each one, you can assign a different property to each submit
button.

<html:submit property="insertSubmit">
<bean:message key="button.newRecord"/>
</html:submit>

<html:submit property="updateSubmit">
<bean:message key="button.updateRecord"/>
</html:submit>

Then in the ActionForm validate(), retrieve and check the values.

boolean doInsert=(request.getParameter("insertSubmit") != null);
boolean doUpdate=(request.getParameter("updateSubmit") != null);

And then validate accordingly.

if (doInsert | | doUpdate) {
...do something...

} else if (doDelete){
...do something else...

}

It is also possible to define forms so that you can use the same form Bean, but use a
different name depending on the action. For example,

<form-bean name="myAddForm" type="package.MyForm" />
<form-bean name="myUpdateForm" type="package.MyForm" />
<form-bean name="myDeleteForm" type="package.MyForm" />

B 5.7 DynaActionForms 57

You can use the same form Bean—MyForm—but identify it by different names depending upon
the action invoked.

<action

path="/some/add"
type="package.MyAction"
scope="request"
name="myAddForm"
validate="true"
input="/add. jsp"
parameter="Add">

</action>

As you can

see, there are a variety of ways to address this problem. The correct imple-

mentation for you depends on the needs of your application.

5.7 DynaActionForms

Now that you have a clear understanding of what can be done with ActionForms, let’s add one
more type to the mix. DynaActionForms provide a convenient mechanism that eliminates the
need to write ActionForms at all. DynaActionForm, introduced in Struts 1.1, allows for properties
to be dynamic. What this means is that you can define properties in your struts-config.xml file
and use the type of the form to be org.apache.struts.action.DynaActionForm. Nothing more
needs to be written. DynaActionForms accomplish this by making use of the DynaBean provided
in the Apache Commons project. This dynamic behavior is provided through reflection and
HashMaps. You can look at the following classes:

org.apache.
org.apache.
org.apache.

org.apache.

commons .beanutils.ConversionException
commons .beanutils.DynaBean
commons .beanutils.DynaClass

commons .beanutils.DynaProperty

It is a bit beyond the scope of this book to go into the DynaBean internals in the Apache
Commons project, but if you have a burning desire to peek at the internals, you can go right
ahead.
A DynaActionForm is defined in the struts-config.xml using the <form-bean> and
<form-property> elements as follows:

<form-bean name="insertDynaForm"

type="org.apache.struts.action.DynaActionForm">

<form-property name="artist" type="java.lang.String"/>

<form-property name="title" type="java.lang.String"/>

<form-property name="genre" initial="Dance" type="java.lang.String"/>
</form-bean>

The attributes of a dynamic form are similar to those of a standard ActionForm. The name
is used to reference this form Bean in Actions, and the type specifies the class to be instantiated.
When using the DynaActionForm class, the dynamic attribute of the <form-bean> automatically

58 Chapter 5: Creating and Building ActionForms ™

defaults to “true.” For a DynaActionForm, you specify all the properties of the form by using the
<form-property> element. The name is the property name. The type is the fully qualified Java
class name of the implementation class of this Bean property. If this is an indexed property,
you can follow the type by []. You'll notice that in the last <form-property> defining the genre
property, we are setting the initial (or default) value to be “Dance.” This is the value that is
also used when the reset() method is called on a DynaActionForm. If nothing is specified in the
initial attribute, then all primitive types are set to zero, while objects are set to null.

It can be very convenient to use DynaActionForm. One of the main advantages is that you
have to write less code. Nothing other than what we just defined in the code sample is required
to use the form just as we use any other form. The one issue to be aware of is validation. When
using DynaActionForm, there is an assumption that validation is handled someplace other than
the ActionForm. It is possible to implement validation within your Action itself, but there is a
better approach.

To do validation, you can use the DynaValidatorForm, or DynaValidatorActionForm, both
found in the org.apache.struts.validator package. By extending the DynaActionForm, basic
field validation can be provided based on an XML file. Validation is based on the key passed
into the validator. This key is the name attribute from the struts-config.xml file. This should
match the form element’s name attribute in the validation.xml. We talk more about the Val-
idatorPlugin and validation.xml in Chapter 9 when we discuss other useful Struts packages.
Another option is to subclass DynaActionForm and just write a validate() method. You don’t
need to write all the getters and setters. This approach is also useful if you just need a custom
reset() method.

It is clearly simpler to create a DynaActionForm, and therefore maintenance of your
application becomes easier.

5.8 Summary

This chapter demonstrated what ActionForms and DynaActionForms are and how to use them. It
looked at some basic design strategies, and it took us on a walkthrough of how to build wizard
functionality forms. It should be obvious that there is a close tie between ActionForms and how
the custom tags work in conjunction with the forms. We’ll be taking closer look at the details
of the custom tags in Chapter 8.

chapterG

Configuring Struts

Previous chapters covered how to create and build your Actions and ActionForms and
touched base on the ActionServlet. This chapter details how to configure those Actions, the
ActionForms, and the ActionServlet instance. It also discusses the two primary configuration
files: struts—-config.xml and web.xml. You'll notice the XML extension on those files. This chap-
ter assumes a basic understanding of how to read XML files as discussed in Chapter 1. If you
need to come up to speed on working with XML files, see www.w3schools.com/xml/default.asp
for a quick tutorial.

6.1 Web.xml

We start with the web application deployment descriptor, also called the web.xml file. Before
being able to use Struts, you must set up your JSP container so that it knows to map all
appropriate requests with a certain file extension to the Struts ActionServlet instance. The
Servlet specification includes a Document Type Descriptor (DTD) for the web application
deployment descriptor. The elements in web.xml must match the order defined in the DTD, but
not all containers enforce this requirement. For maximum portability, be sure your elements
are in the correct positions. If you are interested in reading through the entire Servlet 2.3
specification, you can find it at jcp.org/aboutJava/communityprocess/first/jsr053/serviet23_
PFED.pdf. The web.xml is found in the WEB-INF directory of your web application. It describes
everything that the server needs to know about your application except the context path for
the application. This makes sense because if the web.xml defined the context path, you'd be
in a chicken-and-egg situation. The context path is defined by the system administrator when
an application is deployed in a particular web or application server. Depending on your web
or app server, this is done in different ways, and you should check the documentation for the
particular server you are using. Setup instructions for some of the more popular application
servers have been included on the Struts site at jakarta.apache.org/struts/. Just click on the
installation link to find the server you are interested in.

59

60 Chapter 6: Configuring Struts m

Information included in the web.xml includes the servlets and other components that
make up an application, init parameters, mappings, and container-managed security con-
straints. The web.xml file is read when the JSP container starts. As it relates to Struts, the
web.xml is a standard file, so regardless of which JSP container (or web application server) you
are using, the Struts-specific pieces should still apply.

The vanilla version of the ActionServlet controller (i.e., the one you use if you aren’t over-
riding any of the ActionServlet methods) has a number of supported initialization parameters
that can be specified in the web.xml. If you subclass the ActionServlet to address any special
behavior that you require, additional initialization parameters can be defined and accessed.
The values actually assigned to these initialization parameters can be retrieved in a servlet or
JSP by calling

String value = getServletContext().getInitParameter("name");

where “name” matches the <param-name> element of one of these initialization parameters.
Using application-specific initialization parameters in your web.xml is a way to change the
deployment parameters of your application without having to redeploy the entire application.

Let’s walk through the web.xml for the CD Manager application. I am showing an abbre-
viated version here in the text. If you want the full web.xml version with all comments, access
it in the WEB-INF directory of the download that accompanies this book. Lines beginning with
<!-—are XML comments.

<web-app>
<display-name>Struts CD Manager Sample Application</display-name>
<description>
This is the 1.0 version of the sample application
used in the book The Struts Framework: Practical Guide for Java
Programmers (MK 2003)
</description>

First, we define our web app using the <web-app> element. The <display-name> and
<description> are optional, but informative. Next, we define our Servlet by using the <servlet>
element. The <servlet-name> defines the canonical name that the Servlet is referenced by. The
<servlet-class> defines the fully qualified class name of the class used to instantiate this
Servlet.

<servlet>
<servlet-name>cdmanager</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

6.1.1 Using Subapplications

Any initialization parameters are then defined using the <init-param> element. It is possible
in Struts 1.1 to have multiple subapplications defined and supported. What this means is that
you can break your application into various subapplications for better maintenance. You no
longer have to camp outside the person’s cubicle who has the one and only struts-config.xml
file checked out of source control.

B 6.1 Webxml 61

Another reason to consider using subapplications is for control flow that varies by client.
In some applications, you may have a standard set of pages, but the control flow may vary
depending on what client logs into the application. You could store this control flow meta-data
into a database and generate the web.xml (or portions thereof) file along with all the various
struts-config.xml files.

If you have ever worked with Struts 1.x, you probably noticed that many of the elements
defined in the web.xml file have been moved to the struts-config.xml in Struts 1.1. This is
because they are now application specific. Multiple subapplications are identified by a prefix at
the beginning of the context-relative portion of the request URL. If no application prefix can be
matched, the default configuration is selected. The default has a prefix equal to a zero-length
string. Implementing the default this way allows for backward compatibility with Struts 1.0.x
where it was possible to have only one application defined.

We are using only one application in our CD Manager application because it is relatively
small in scope. If you had a large-scale application that contained different functional areas,
then it would make sense to consider having subapplications that work together instead of
one big application. If we were to break our sample application into subapplications, those
subapps would be defined using the following elements in the web.xml file:

<!-- The default subapplication -->
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

<!-— The catalog subapplication -—>

<init-param>
<!-- catalog prefix -—>
<param-name>config/catalog</param-name>
<param-value>/WEB-INF/struts-config-catalog.xml</param-value>

</init-param>

<!-— The sorter subapplication -—>
<init-param>
<!-sorter prefix -—>
<param-name>config/sorter</param-name>
<param-value>/WEB-INF/struts-config-sorter.xml</param-value>
</init-param>

When using subapplications, you might define the context-relative request URISs to specify
which subapp to use. For example, the action on a form might appear as

<html:form action="/logon" >
which refers to the default subapplication or

<html:form action="/catalog/listCds" >

62 Chapter 6: Configuring Struts m

which refers to the Action class in the catalog subapplication. You don’t actually have to do
this. You can use “/listCds” if you want within the catalog subapplication. The basic rule is
this: all struts-config.xml parameters that were context relative in 1.0 are now subapp-prefix
relative in 1.1. That way, a single application can be used either as the default subapplication
or as a named subapplication with no change.

Note that when using a multiple subapp environment, there is still a single instance
of the controller Servlet. However, there can be multiple struts-config.xml files—one per
subapplication—as was shown earlier. The information contained in the specific struts-
config.xml is the information stored in each ApplicationConfig object.

In order for this subapp feature to work, any request for a presentation page that uses
elements from the configuration file, including ActionForms, Forwards, and ActionMappings,
must be routed through the controller. This allows the controller to make the appropriate
configuration available for a given page. The controller Servlet in 1.1 now creates two request
attributes for all requests that flow through the controller so that configurations specific to
that subapplication can be identified. These request attributes are Action.APPLICATION_KEY,
which contains the ApplicationConfig instance for the subapplication selected by the current
request URI, and Action.MESSAGES_KEY, which contains the MessageResources instance for the
subapplication selected by the current request URI. Both of these String constants are defined
in the Action class and are used as the key to look up the request attributes.

In order for both of the request attributes to be set, all requests must pass through the
controller. Having requests pass through the controller is not new to Struts 1.1. While it might
have been possible to bypass this by having direct linking to pages, it is good design practice to
make sure everything flows through the controller. If we think back to our MVC model, this is
the way it should be anyway. Many other features in advanced applications, including security
and logging, are easier to implement when everything passes through the controller.!

6.1.2 Other Initialization Parameters

As we continue through our web.xml file, there are also various debugging parameters specify-
ing the debug level and the detail that should be displayed. The validate parameter is used to
specify whether a validating XML parser should be used to read the configuration file.

<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>

</init-param>

<init-param>
<param-name>detail</param-name>
<param-value>2</param-value>

n the 20%, but still-worth-pointing-out category, requests in a subapp are assumed to go back to that
subapp. Switching from one subapp to another can be accomplished programmatically, via Request-
Utils.selectApplication(), or through a hyperlink using the new standard action SwitchAction.

B 6.1 Web.xml 63

</init-param>2

<init-param>
<param-name>validate</param-name>
<param-value>true</param-value>

</init-param>

The <load-on-startup> parameter comes from the Servlet specification and tells the server
what the preference order to load this Servlet is when the application starts. If a positive integer
is specified, then it will be used to determine the load order. Lower values are loaded first. If
there is no value, or if the value is a negative number, then the container is free to load the
servlets in any order during startup.

<load-on-startup>2</load-on-startup>

Then we complete our Servlet element with </servlet>.

6.1.3 Defining the Servlet Mapping

The Servlet mapping element defines the mapping between a Servlet and a URL pattern. The
<servlet-name> specifies the Servlet we are associating with a given URL pattern. This should
match the <servlet-name> used when defining the Servlet in the <servlet> element. The URL
pattern is specified by using the <url-pattern> element.

<!-- Action Servlet Mapping -->
<servlet-mapping>
<servlet-name>cdmanager</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

It is common practice to use the .do extension for action classes; however, nothing
prevents you from defining whatever extension you want as long as it follows the syntax rules.
As defined in the Servlet 2.3 specification, the following syntax is used to define mappings:

®m A string beginning with a / character and ending with a /* postfix is used as a path
mapping.

m A string beginning with a *. prefix is used as an extension mapping.
m All other strings are used as exact matches only.

m A string containing only the / character indicates that servlet specified by the mapping
becomes the “default” servlet of the application. In this case, the servlet pathis the request
URI minus the context path, and the path info is null.

2The “debug” and “detail” parameters are deprecated in 1.1, which uses commons-logging instead of the
built-in logging code in 1.0.

64 Chapter 6: Configuring Struts m

Table 6.1: Servlet mapping examples.

Sample Request path Servlet

1 /logon.do cdmanagerl

2 /bar/logon.do cdmanagerl

3 /foo/bar/logon.html cdmanager?2

4 /bar cdmanager3

5 /bar/logon.html Default servlet

This makes more sense by using a sample. Let’s say we have three servlet mappings that
specify three different servlets.

<!-— Action Servlet Mapping -—>

<servlet-mapping>
<servlet-name>cdmanagerl</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>cdmanager2</servlet-name>
<url-pattern>/foo/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>cdmanager3</servlet-name>
<url-pattern>/bar</url-pattern>

</servlet-mapping>

In this case, the incoming path requests shown in Table 6.1 would result in the specified Servlet
handling the request.

In Sample 1, /logon.do matches the *.do URL-pattern, so the request will be routed to
cdmanagerl. In Sample 2, /bar/logon.do also matches the *.do pattern. The reason that we
don’t use the URL-pattern /bar is there is no * specified, so it will only match the exact URL
/bar. Sample 3 matches our /foo/* pattern, so the request will be sent to cdmanager2. Note
that when * is specified, it matches everything after the prefix.

Sample 4 is an exact match of our /bar URL-pattern and is sent to cdmanager3. Sample 5
falls through all the URL-patterns because we don’t have *.html specified in any of the
definitions. Therefore, it will be sent to the Servlet that is the default for the server. For Struts,
the only two practical URL-patterns are path matching (/foo/*) and extension mapping (*.do).
In addition, you must use extension matching if you are using subapplications.

6.1.4 The Welcome File List

The <welcome-file-1ist> contains an ordered list of welcome file elements. The <welcome-file>
element contains the filename to use as a default welcome file, such as index.jsp in our case.

B 6.1 Web.xml 65

<!-- The Welcome File List -—>
<welcome-file-list>
<welcome-file>index. jsp</welcome-file>
</welcome-file-list>

Note, though, that the welcome file list defines the default file(s) for all directories, including
the root and all subdirectories. It does not specify the URL of a default page for the web applica-
tion. So if you request testserver/app/, the application looks for testserver/app/index.jsp. If you
request testserver/app/mydirectory/, the application looks for testserver/app/mydirectory/
index.jsp. It’s a subtle point, but one worth mentioning.

6.1.5 Defining the Custom Tag Libraries

It is possible to utilize custom tag libraries in your web application. A number of custom
tag libraries are used in the Struts framework. If you define your own custom tag libraries,
they must follow the same syntax. When defining a tag library, the <taglib> element is used
to describe the JSP tag library. It contains two elements. The first is the <taglib-uri> that
describes a URI, relative to the location of the web.xml file and identifies a tag library that is
used in the web application.

The second is the <taglib-location> that contains the location of the tag library descrip-
tor (TLD) file that defines the tags used in this library. The location is defined as a resource
relative to the root of the web application.

In our sample application, we also have a tag library that we defined ourselves called
app.tld. It’'s not uncommon to have the <taglib-uri> and the <taglib-location> be the same
place. Even though it is defined the same way, this is a sample using one of the Struts TLD files.
For the full taglib listing, refer to the web.xml file in the sample application download. We will
be talking about the taglibs in more detail in the next chapter.

<taglib>
<taglib-uri>/WEB-INF/app.tld</taglib-uri>
<taglib-location>/WEB-INF/app.tld</taglib-location>
</taglib>

<!-- Struts Tag Library Descriptors -->
<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

By defining the tag libraries available to our application in the web.xml, we are able to
reference them in a JSP file.

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

Once the library is declared in the JSP, the tags available in the library may be accessed
and used by referring to the prefix of the library. A sample access of the message tag provided
in the struts-bean.tld looks like <bean:message key="prompt.password"/> in the JSP file.

66 Chapter 6: Configuring Struts m

6.1.6 Other Elements

There are other elements available in the web.xml that can be specified for security, security
roles, error-handling, data, or EJB configuration, to name a few of the elements. However, to go
into all the available elements in the web.xml is a bit beyond the scope here. We’ve hit upon the
basic elements required to configure and use a web.xml document with Struts. If you are inter-
ested in the other types of elements available for advanced applications, see Chapter 13 of the
Servlet 2.3 specification found at jcp.org/aboutjava/communityprocess/first/jsr053/serviet23_
PFD.pdf.

6.2 Struts-config.xml

Once we have our JSP/Servlet container configured using the web.xml, our attention turns to
the struts-config.xml file used for defining the Struts-specific aspects of your application. The
struts-config.xml file can be used to define areas that include

m Data sources

® Form Bean definitions

Global exceptions

Global forwards

®m Action mappings

Controller configuration

We’ve already talked about the global exceptions and gone through an example. Let’s look
at each of the others in more detail.

6.2.1 Defining Data Sources

If you need to define data sources for your application, you can by using the <data-sources>
element and then defining each data source using the <data-source> element and various
attributes. In our sample application, I am using MySql and the associated MySql JDBC driver.
MySql is a popular open source database and can be found at www.mysqgl.com.

<data-sources>
<data-source
autoCommit="false"
description="CD Manager sample datasource"
driverClass="org.gjt.mm.mysql.Driver"
maxCount="4"
minCount="2"
password="mysql"
url="jdbc:mysql://localhost/cdsample"”
user="developer"/>

</data-sources>

B 6.2 Struts-config.xml 67

It is then possible to access the data source from an Action class by using the following
line of code:

DataSource dataSource =
(DataSource)servlet.getServletContext().getAttribute(Action.DATA_SOURCE_KEY);

The Action.DATA_SOURCE_KEY is a String constant defined as org.apache.struts.action.
DATA_SOURCE in the Action class and is used to reference the context attribute key under which
the default configured data source is stored. This attribute will be set if a data source is config-
ured for this application. When you are using data sources, make sure that your attributes, like
the user and password, are set correctly for your data source access. When the Struts controller
(ActionServlet) initializes, it tries to initialize the defined data sources as well. If there is a
problem with initialization, the ActionServlet init fails, but it might not be obvious why it
failed. Look in the server logs for the exact error message. When using Tomcat 4.x, this would
be the §CATALINA.HOME/logs directory.

6.2.2 Defining Form Beans

Form Bean definitions are used to describe configuration of the ActionForms used in Struts.
Defining form Beans is simple. All form Beans are contained within the <form-beans> element.
Each form Bean is defined by specifying the logical name of the form and the type of class
it is. The name is what is used by the action mappings. The type is simply the fully qualified
classname of your ActionForm class. The following sample shows some of the forms available
in the CD Manager application:

<form-beans>

<form-bean name="logonForm"
type="cdmanager.forms.LogonForm" />
<form-bean name="searchForm"

type="cdmanager.forms.SearchForm" />
</form-beans>

6.2.3 Defining Global Forwards

Global forwards are just that; they are global definitions that can be referenced from your
action classes or JSP files without having an explicit forward definition defined in your action
mapping. Think of global forwards as “includes” to your action mappings. They are available
to all actions in the application that require a forward. The advantage of using a global forward
is that by having everything located in your struts-config.xml file, if changes must be made
in your application, they must be done in only one place. A sample of a <global-forwards>
definition is
<global-forwards>
<forward name="logoff" path="/logoff.do"/>
<forward name="logon" path="/logon.jsp"/>
</global-forwards>

68 Chapter 6: Configuring Struts m

Each <forward> defines the canonical name that the forward will be referenced by and
the path that should be forwarded to. Notice that you can have both actions and direct pages
specified. There is also a redirect attribute that can be set to “true” or “false” depending on if
you want a redirect performed or not.

<forward name="logon" path="/logon.jsp" redirect="true"/>

Forwarvds vs. Redirects. So how do you decide when you want to forward and when you want
to redirect? It depends on the needs of your application, but there are a couple of important
differences to consider that can help you decide. When you forward, the target page is invoked
by the JSP container through an internal method call on the server. Therefore, the same request
is used for the processing on the new page and the browser is none the wiser (i.e., you still see
the original URL on the address line in the browser). When doing a redirect, the page doing the
redirect informs the browser to make a new request to the target page. The URL shown in the
browser therefore changes to the URL of the new page. When doing a redirect, any request scope
objects are no longer available to the new page because the browser creates a new request. If
you need the information from the request, you can either pass it as a request parameter or
save the data in a session or application scope object.

Most of the time you will be using forwards, but there might be circumstances that
require you to use a redirect. In situations where you are using cookies or have pages that
update information (e.g., when inserting information into a database), you probably want to
use redirect so that on a page reload that action isn’t performed again.

6.2.4 Defining Action Mappings

The action mappings are used to determine the flow of your application. They are the roadmap
for the entire Struts framework. The action mappings tell the controller what classes to instan-
tiate for Actions, what forms to use when calling the execute() method of the Actions, and
what forwards are to be used from the execute() method return. Action mappings are straight-
forward to write. All action mappings are defined within the <action-mappings> element. Each
action mapping is defined by an <action> element.

There are two types of action mappings: those that use form Beans and those that don’t.
Actions that use a form Bean are those that require some type of data input. If no data is
required, then the form Bean is omitted and a null is passed to the execute() method of the
Action.

Let’s look at the wizard action from our sample application. The wizard action is a typical
action mapping that requires a form Bean.

<action-mappings>
<action path="/wizard"
type="cdmanager.actions.WizardAction"
name="wizardForm"
scope="request"
validate="true"
input="/wizard.jsp">
<forward name="next" path="/wizard.jsp"/>

B 6.2 Struts-config.xml 69

<forward name="success" path="/wizarddone.jsp"/>
</action>
<action-mappings>

The path attribute gives the path used to refer to this action. As we've seen from our
JSPs, this is what is on the action attribute of a form submission. The type gives the full,
context-relative class path to the Action class that should be instantiated for this Action.

The scope attribute defines whether this action should have either request or session
scope. The default is session, but you are encouraged to use request scope unless you truly
require session scope. Validate indicates whether or not the controller (ActionServlet) should
call the validate() method of the ActionForm specified for this action. The input attribute gives
the path to the JSP that should be displayed if there is an error or exception that occurs during
the ActionForm validation. If you have the validate attribute set to “true,” you need to supply
an input value; otherwise, you will get a runtime error.

There can be any number of forwards defined in an action mapping and then used by
the Action class to return the next page (or action) that is called by the controller. This is
where the lookup that we’ve seen using the return mapping.findForward("success") call in our
Action class gets its information. Remember, any global forward definition can also be used
as a lookup return value for the Action. For example, we previously defined a global forward
to “logon” that will forward to the /login. jsp file. Any Action within our application can do a
return mapping.findForward("logon") and will be forwarded to the /login.jsp page. Keep in
mind what we mentioned earlier regarding forwards. Local forward definitions for the same
logical name will override the global one for that action only.

6.2.5 Action Attributes

There are a number of other attributes that can be specified in an <action> element. Let’s walk
through them.

The attribute attribute (no, that’s not a typo) is arequest scope or session scope attribute
name under which our form Bean is accessed if it is different from the form Bean’s name
specified in the name attribute. For example, if we have an action defined

<action
path="/insert"
type=" cdmanager.actions.Insert"
name="cdForm"
attribute="newCdForm"

</action>

the string “newCdForm” would be used to search the scope for the existence of the form instead
of the string “cdForm.”

The forward attribute is the context-relative path of the web application resource that
processes this request via RequestDispatcher.forward(), instead of instantiating and calling
the Action class specified by the type attribute. The forwards define the return values from the
Action.

70 Chapter 6: Configuring Struts m

There can be only one forward, include, or type specified in the forward method call.
Keep in mind that there can be many forwards per action. The include attribute is the same
except it processes the request using RequestDispatcher.include().

The multipartClass is the fully qualified Java class name of the MultipartRequestHandler
implementation class used to process multipart request data for this Action. MultipartRequest-
Handler provides a standard interface for Struts to deal with file uploads from forms with
enctypes of “multipart/form-data.”

The parameter attribute is a general-purpose configuration parameter that can be used
to pass extra information to the Action instance selected by this Action. It’s possible to
access the parameter’s value within the Action class via the mapping.getParameter() method.
An example of a use for the parameter attribute is to indicate what step in a wizard you
are processing. While there can be only one parameter attribute per action, it is possible
to specify more than a single parameter value by using a delimiter to separate the values
like

<action ... parameter="paraml;param?;param3" />
or specify key-value pairs like
<action ... parameter="keyl=valuel;key2=value?2;key3=value3" />.

Basically, you can use the parameter attribute however you like as long as you write
whatever code is necessary to parse the string if there is more than one value. This is useful if
you have several related tasks using a parameter to distinguish them. There is a good sample
of a helper class to tokenize parameters from the action mapping in the Struts contrib folder
in the Scaffold source code example. The class is org.apache.scaffold.http.HelperAction in
the perform() method if you want to reference it.

The prefix and suffix attributes are used to match request parameter names to form
Bean property names. A comma-delimited list of security role names allowed to request this
Action can be specified using the roles attribute. If you need to access the set of security
role names used to authorize access to this Action, call the getRolesNames() method on the
ActionConfig object and an array will be returned.

If the unknown attribute is set to “true” for an action mapping, that indicates that it should
be the default action for the application. It is considered good practice to use action mappings
for everything that needs to be done through the application. This guarantees that the request
will pass through the controller and that it sticks to the MVC model. Therefore, you should
have at least one unknown attribute set for an action mapping so that there is a default action
mapping.

It’s possible to tailor actions for specific tasks. For example, say that you have two
different actions that both use the same ActionForm, but only one of the actions requires
the validation to be performed. This can easily be configured in the sample action map-
ping as

<action
path="/search"

B 6.2 Struts-config.xml 71

type="cdmanager.actions.Search"
name="cdForm"
scope="request"
validate="false">

</action>

<action

path="/insert"
type="cdmanager.actions.Insert"

name="cdForm"

scope="request"

validate="true"

input="/Insert.jsp"">

<forward name="success" path="/confirm.jsp"/>
</action>

In this sample, we have two different actions that both use the cdForm to gather data. On the
search action, we don’t want to validate the form, but on the insert we do so that the user
doesn’t try to insert bad data.

6.2.6 Controller Configuration

A primary design goal in the Struts 1.1 release is that the struts-config.xml for an existing
1.0.x Struts application can be used as a subapplication with no changes. Due to support for
the subapps, all the context-relative values in struts-config.xml are now actually application
relative. The implication this has is that a request URI is now a concatenation of the context
path plus the application prefix plus the local value. This works even for the default sub-
application because its prefix is a zero-length string. This is the reason the application-specific
attributes have been moved into this struts-config.xml file from the web.xml where they used
to live in Struts 1.0.x. However, the existing init params are still recognized for the default
subapplication.

There is a <controller> element to specify the controller configuration for requests
directed to this application. There are a number of attributes that can be specified in this
element. These are listed in the Table 6.2.

If you create a custom RequestProcessor, you specify it in each struts-config.xml where
it is needed, as in

<controller processorClass="classname" />

where classname is the fully qualified class name. The default processorClass is org.apache.
struts.action.RequestProcessor.

The RequestProcessor contains the processing logic that the Struts controller servlet
performs as it receives each servlet request from the container. It is possible to over-
ride any of the methods that you need to customize. Usually this will be the process-
Preprocess() method, which is a general-purpose preprocessing hook. The RequestProcessor

72 Chapter 6: Configuring Struts m

Table 6.2: Attributes of <controller> element.

Attribute

Purpose

Default value

bufferSize

className

contentType

debug

locale

maxFileSize

multipartClass

nocache

processorClass

tempDir

The size of the input buffer used
when processing file uploads

Implementation subclass of the
standard configuration Bean,

if you do not want to use the
standard value

Default content type (and
optional character encoding) to
be set on each response; may
be overridden by a forward to
Servlet or JSP

Debugging detail level for this
application

Set to true if you want a Locale
object stored in the user’s
session if not already present

The maximum size (in bytes)
of a file to be accepted as a file
upload; can be expressed as

a number followed by a K, M,
or G, which are interpreted to
mean Kkilobytes, megabytes, or
gigabytes, respectively

The fully qualified Java class

name of the multipart request
handler class to be used

Set to true if you want Struts to
add HTTP headers for defeating
caching to every response

The fully qualified Java class
name of the RequestProcessor
class to be used

Temporary working directory
to use when processing file
uploads

4096

org.apache.struts.config.ControllerConfig

text/html

True

250M

org.apache.struts.upload
.DiskMultipartRequestHandler

False

org.apache.struts.action.RequestProcessor

Directory provided by servlet container

is an implementation of the intercepting filter design pattern that allows for preprocessing
and postprocessing of a request. Using this design pattern enables filters to process com-
mon services that might be required in an application without having to make changes to
core request processing code. Some examples of what might be considered common services
include

B 6.2 Struts-config.xml 73

Client authentication

Valid client session
m Constraints that might be applicable to request paths

® Browser version or type support

Logging information

A situation where you might want to create your own custom RequestProcessor class is
if you wanted to check for a valid session attribute to ensure that a user is logged into the
application. We've already talked about doing a check in either the Action or a custom tag.
This is another alternative. You can check the session for something that your logon action
should have already put there. If it’s there, return super.processPreprocess() . If it’s not, return
mapping.findForward("logon"), assuming you have a global forward in your struts-config.xml
called “logon.”

While it’s also possible to do this type of checking in a base class for your Actions,
the advantage of doing it in the processPreprocess() method is that it is called before the
ActionForm validate() and the Action execute() methods.

The declaration of the <controller> element must be done after action-mapping declara-
tions. It should be the last element in the struts-config.xml file unless you also have Plugins
defined. A sample <controller> element is

<controller
processorClass="cdmanager.framework.CustomRequestProcessor"
debug="2"
nocache="true" />

6.2.7 Defining a Plugln

A new feature of Struts 1.1 is the ablity to define a PlugIn. A Plugln is a configuration wrapper
for an application-specific module or service that must be notified about application startup
and application shutdown events. These events correspond to the container calls init() and
destroy() on the corresponding ActionServlet instance that allows a module to be called
without the need to subclass ActionServlet for simply Servlet lifecycle activities.

Plugln modules can be configured in the struts-config.xml file using the <plug-in>
element. Classes that implement the Plugln interface must supply a zero-argument constructor
for use by ActionServlet. Configuration can be accomplished by providing standard JavaBeans
property setter methods that will all have been called before the init() method was invoked.
An instance of the specified class is created for each element, and can be configured with nested
<set-property> elements. For example, in the struts-config.xml, we might have the last entry
defined as

<plug-in className="org.apache.struts.validator.action.ValidatorPlugIn">
<set-property property="pathname" value="/WEB-INF/validator-rules.xml"/>
<set-property property="pathname" value="/WEB-INF/validation.xml"/>
</plug-in>

74 Chapter 6: Configuring Struts m

This means that two instances of the ValidatorPlugIn will be created, each setting the property
pathname to the appropriate value. We will take a closer look at the ValidatorPlugln in
Chapter 11, but it was important at this juncture to show a sample of how a Plugln might
be used.

6.3 Summary

Chapter 6 showed how to set up and configure both your web application using the web.xml file
and the Struts-specific pieces using the struts-config.xml file. It further demonstrated how to
create subapplications as well as how to set up and configure the Controller component. Last, it
provided details about the available elements and attributes to define data sources, form Beans,
global forwards, and action mappings. Between these two files, an entire web application flow
can be defined and used for processing.

chapter 7

Building Struts-Enabled JSPs

Throughout this book, we have been talking about various Struts components and how
to create and use them. Interwoven throughout the discussion has been the use of JavaServer
Pages. This chapter covers how to build Struts-enabled JSPs and is kept intentionally short.
Primarily, I want to make sure that it’'s understood where the taglib issues fit into the Struts
world. The next chapter will go into details about how to actually use and apply the custom
tags provided with Struts.

The only thing that really makes a JSP Struts enabled is the use of the various custom
tags that are available. Custom tags are usually distributed in the form of a tag library. The tag
library defines a set of related custom tags and contains the objects that implement the tags.
These objects are called the tag handlers. If you wanted to build straight HTML files without
using the Struts custom tag libraries, you can do so. However, I'll show why you would want
to use them, and how to do it. While it is entirely possible that you might need to build some
of your own custom tags and include them in your defined tag library, we are not going to
go into detail about this since it is beyond the scope of this book. However, an application-
specific sample of a custom tag library is included with our sample application in case you are
interested. If you need more details about how to build your custom tags, refer to the tutorial
located at java.sun.com/products/jsp/tutorial/TagLibrariesTOC.html.

The main purpose of the JSP technology is to provide dynamic content and to sep-
arate content generation and business logic from presentation. It does so by taking ad-
vantage of reusable tags and Objects, both of which simplify the maintenance of web
applications. We will be going into the details of the Struts custom tag libraries in this chapter.
I am assuming that you have a good working knowledge of JSP technology. If you need to
brush up on the basics or are interested in reading the full specification, it can be found at
java.sun.com/products/jsp/download.html. If you want a quick and handy reference card on
JSP syntax, you can download it from java.sun.com/products/jsp/technical html#syntax.

With that said, let’s get started using JSPs and the Struts custom tag libraries in your
projects.

75

76 Chapter 7: Building Struts-Enabled JSPs m

7.1 Setting Up a JSP

It is possible to have a JSP that doesn’t include any of the Struts custom tag libraries but that
is still used within framework. There can be a JSP that is identified in an action mapping, a
confirmation page, or an error page that is used on its own.

There are a number of reasons for using the available tag libraries. The first is that
they provide a consistent way to build your pages. By using not only the available Struts cus-
tom tag libraries, but other tag libraries such as those available from the Jakarta Taglibs
project (jakarta.apache.org/taglibs/index.html) or in the JSP Standard Tag Library (JSTL)
(java.sun.com/products/jsp/taglibraries.html#jstl), the JSP becomes more readable and there-
fore more maintainable.

While this might not seem like a big deal, when you’re working on a large-scale web appli-
cation where you can have more than a few dozen JSP files, this issue deserves consideration.

Next, by using the custom tags, you will save yourself—and your development team—
time from reinventing the wheel for functionality that might already exist. And it might have
already been tested, too.

Third, functionality provided in the custom tags already takes into consideration some
of the features of the Struts framework. This includes internationalization, as well as ease
of use of working with Beans in your pages. So, to conclude this discussion, it is usually
worthwhile and time saving to use custom tags. The question then becomes, how do you use
them?

7.1.1 Making Tags Available

Making custom tags available to your pages is simple. First, the custom tag library must be made
available for your application. This is done by using the <taglib> element in your web.xml file.

<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

There is a <taglib> element for every tag library that you plan to make available in your
application. It doesn’t matter whether it’s a tag library that you created yourself or if it’s
one provided from a third party (like Struts or Jakarta). It is usually easiest to just include
a <taglib> entry for all the available taglibs, even if you don’t initially think that you will be
using them. There really is no substantial overhead associated with having them declared in
the web.xml.

Next, you need to make the tags themselves available on the JSP that will use them. This
is done using the JSP taglib directive. This directive defines a tag library and the prefix that is
used for the custom tags in the JSP. The taglib directive must be specified before any of the
custom tags are used in a JSP. It’s possible to use more than one taglib directive in a JSP, but
the prefix defined in each must be unique. A sample use of this directive follows:

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

® 7.2 Taglib Definitions 77

The URI attribute is the Uniform Resource Identifier (URI) that uniquely locates the TLD that
describes the set of custom tags associated with the named tag prefix. If the URI is a pathname,
it is interpreted relative to the root of the web application and should resolve to a TLD file
directly or to a JAR file that has a TLD file at location META-INF/taglib.tld. The prefix is what
is used to reference a custom tag from that library.

For example, <bean:message /> refers to the custom tag message as defined in the Bean
library that was declared in the preceding sample. You can name your prefix anything you
like; however, it makes more sense to call it something logical so that your custom tags can
be read easily. Prefixes can’t be empty, and you can’t use any of the following: jsp, jspx, java,
javax, servlet, sun, and sunw. These prefixes are reserved by Sun Microsystems. Anything else
is fair game, but use common sense.

7.2 Taglib Definitions

In any given application, even with the best-laid design plans and intentions, what starts out
small has a way of ending up bigger than you expected. This is usually the result of a variety of
factors. User requirements become better defined as development progresses, changes occur
in design strategies, new functionality becomes required, and so on. Because of this fact of
development life, I always like to plan ahead and always act as though things are going to grow
and need to be easily maintained. Therefore, it’s better to keep things organized. A big step in
that organizational direction comes in the form of taglib definitions.

As we've seen, it’s possible to use a custom tag library from a variety of sources: those
that you build yourself or those you get from third parties. It is possible to—and many people
do—just add the taglib directive to each and every JSP that will use a particular tag library. I find
it easier to manage if you have one JSP file that contains all the taglibs that you will be using
in your application. Doing it this way results in several benefits. One is that all JSPs will use
prefixes consistently throughout the application. Another is that if revisions of taglibs change
and you need to point to different TLD files, the change can be done in one place instead of
throughout various JSPs. The way to accomplish this is to have one JSP (I call it taglib.jsp in
our sample application code) that looks something like this:

<!—— Listing of all of the taglibs that we reference in this application -—>
<!-- Struts provided Taglibs -—>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<!-- Application-specific Taglibs —-->

<%@ taglib uri="/WEB-INF/app.tld" prefix="app" %>

That way, all that must be added is
<%@ include file="/WEB-INF/taglibs.jsp" %>

at the top of each JSP in the application. There. Your application maintenance has just been
simplified. While there is no real performance penalty that I've noticed for the additional
include, even if there was, the maintenance issue takes priority.

78 Chapter 7: Building Struts-Enabled JSPs m

Once all of your taglib directives have been set up, you are ready to use the custom
tags. Chapter 8 explores the various custom tags provided by Struts along with how to use
them.

7.3 Summary

JSPs are the main View objects of the MVC architecture used in Struts. A number of custom
tag libraries are available that can be used in your development to make life easier, and they
can come from a variety of sources. It is simple to add in tag library references if you maintain
your applications using a single file to define those libraries.

chapter8

Working with the Struts
Custom Tag Libraries

N ow that you understand how to get the custom tag libraries into your JSP files, it’s time

to put the pedal to the metal. If you equate this book to a good meal, get ready for the main
course. There are quite a few tags provided in a number of Struts libraries. We will walk through
the tag libraries, explore what is available, and then look at how to use the most popular tags
by examining tags from our sample application. This chapter is the longest in the book, but
don’t be intimidated. There’s a lot to know about these tag libraries, and the more comfortable
you are working with the various tag libraries, the more powerful your JSPs will be and the
quicker you will be able to develop them.

There are five tag libraries available with Struts 1.1. Each library contains multiple tags.

The name and general purpose of each are

Struts-html. Tags useful for creating dynamic HTML user interfaces and including input
forms.

Struts-bean. Tags useful for defining new Beans, in any scope, from a variety of possible
sources.

Struts-logic. Tags useful for manipulating presentation logic without the use of scriptlets.

Struts-nested. Tags useful for extending the current Struts tags to allow for nesting. This
library provides the ability to define a nested object model, represent, and also manage
that model.

Struts-template. Tags useful for creating dynamic JSP templates for pages that share a
common format.

Some of the tags that are available in Struts have a very good chance of becoming part of

the Jakarta Taglibs project, or even deprecated because the functionality might appear in the
JSP Standard Tag Library (JSTL). Just be aware that this is a fluid chapter, but it should give

79

80 Chapter 8: Working with the Struts Custom Tag Libraries m

you a good understanding about how to use the tags regardless of where they exist at the time
you read this. Also, there are a variety of tag libraries offered on the Resources page on the
Struts site that are provided by engineers like you and me who have written useful tags. I won’t
be going into details about those, but I encourage you to check out what’s available. There is
some useful stuff up there.

In short, it’s possible that by the time this book goes to press there could be more tag
libraries, but I'll work with what is available now. So, let’s begin examining some common
aspects of the libraries and then we’ll look at each library in turn.

8.1 When Tags Throw Exceptions

It’s always possible at some point when using tags to make a mistake. If a tag is used incorrectly
by way of specifying the wrong attributes, a JspException will be thrown at runtime. As with
any JSP that has the potential to throw exceptions, it is recommended that an error page be
declared so thatif an exception is thrown, atleast it will be directed to an error page. This is done
by using the JSP <%@ page %> directive. It’s possible to then process the exception thrown by
the tag on the error page by accessing the attribute key org.apache.struts.action.EXCEPTION_
KEY in the request. For example, I've added the page directive into the taglib.jsp so that it is
available for all JSPs as follows:

<!-- Common error page for all JSPs -—>
<%@ page errorPage="/errorpage.jsp" %>

Then I have created an errorpage. jsp that includes the following code snippet:

javax.servlet.jsp.JspException jspException =
(javax.servlet.jsp.JspException) (request.getAttribute(Action.EXCEPTION_KEY));
if (jspException != null){

message = ((Exception)jspException).getMessage();

}

For the full code that formats and prints out the exception stack, reference the file in the
sample download. By using this mechanism, you will at least get a reasonable error message
displayed if your tag throws an exception.

8.2 Using Property Referencing

Tags (in both the Struts-html and Struts-bean libraries) that support the property attribute
generally support simple, nested, and indexed references. A simple reference is similar to the
syntax of the standard <jsp:getProperty>, <jsp:setProperty>. Using the standard JavaBeans
naming conventions (see java.sun.com/products/javabeans for the complete specification), the
getFoo() and setFoo(fooValue) method calls are made. Additional support included with Struts
is its use of the standard Java reflection (in the PropertyUtils class) and Introspection APIs to

® 8.3 Using the Struts-html Tag Library 81

identify the names of the actual property getter and setter methods. This allows customized
method names to be specified in a BeanInfo class.

Nested references allow for dot notation. It is possible to access a property through
a hierarchy of property names separated by periods (.). For example, the getter of the
following property reference property="foo.bar" is translated into the equivalent Java code
getFoo().getBar().

When processing an input form where the setter method is called on a nested reference,
the entry in the chain is the one that has the value passed to it. So the Java code would resemble

getFoo().setBar(value)

Indexed references are used if a properties value is an array; then subscripts can be used
to access the individual elements. This type of reference is also used when the JavaBean offers
indexed getter/setter methods. So property="foo[3]" translates to getFoo(3). The correspond-
ing setter would translate to setFoo(3,value). When using an indexed reference, always follow
zero-based indexing.

It is possible to use a combination of reference types where both nested and indexed
properties are used arbitrarily. An example of this is foo.bar[0].

Be careful because if you get the syntax wrong or you don’t have the Bean methods set
up correctly, JSP runtime exceptions will be thrown.

8.3 Using the Struts-html Tag Library

The tags implemented in the Struts-html taglib are used to create Struts input forms as well
as HTML-based user interfaces. As a reference, the available tags in the html library are shown
in Table 8.1. We will look at some of the common tags specifically with examples.

One might ask, why would you want to use a set of custom tag libraries for basically
duplicating many HTML elements? That was the first thing that popped into my mind when I
started working with the Struts tags. It turns out, there are a number of reasons for it. One of
the main reasons involves the internationalization tags for non-form-related tags. If your site
is implemented in several languages, all of your images and text come from ResourceBundles.
Struts is already aware of these bundles and will display the right content for the specified
locale. The <html:img> and the <html:errors> tags are good examples of this.

A second reason for using such tags is their ease of use. The tags provide a clean approach
to coding in the JSPs, and they keep the pages readable. Upon further examination, some of
the tags provide additional functionality that the developer doesn’t have to worry about. An
example of this is when using the <html:1ink> tag. This tag automatically handles URL rewriting
of the jsessionid for users who do not support cookies. So as you can see, there is more to
the html tags than meets the eye, or to be precise, than meets the page.

While it’s possible that some of the extra functionality provided in the tags might not be
useful to your project, chances are that many of the tags will be. It’s also possible to use some
of the tags and not others. So the choice is really up to each developer to use the tags as he or
she sees fit.

82 Chapter 8: Working with the Struts Custom Tag Libraries m

Table 8.1: Struts-html tag reference.

Tag name Rendering description
base HTML <base> element
button Button input field

cancel Cancel button

checkbox Checkbox input field
errors Conditionally display a set of accumulated error messages
file File select input field

form Define an input form
hidden Hidden field

html HTML <html> element
image Input tag of type image
img HTML img tag

link HTML anchor or hyperlink
messages Conditionally display a set of accumulated messages
multibox Checkbox input field
option Select option

options Collection of select options
optionsCollection Collection of select options
password Password input field

radio Radio button input field
reset Reset button input field
rewrite Render a URI

select Select element

submit Submit button

text Input field of type text
textarea Input field of type textarea

Space dictates that it’s not possible to provide samples for each and every tag that is
available, so let’s pick a few of the more common and useful tags from the HTML library and
walk through them.

8.3.1

Many of the HTML tags work within the context of an <html : form> tag. The form tag outputs a
standard HTML form tag, but more important, links the input form with an ActionForm object.
The appropriate Bean class to associate the subclassed ActionForm is specified either as a
property to the form tag or in the struts-config.xml in the action mapping. Each field on the

Using and Accessing Form-Related Tags

m 8.3 Using the Struts-html Tag Library 83

input form should correspond to a property in the ActionForm Bean instance. Using reflection,
when a form field and Bean property correspond, the Bean is first used to populate the form
if the Bean is already in scope, and then to store the user’s input when the form is submitted
to the controller servlet.

The form tag specifies the action that the controller dispatches to by using the action
attribute. For example, in our login.jsp we have

<html:form action="/logon" focus="userName">... </html:form>

When a submit is done on this form, the logon action mapping (as defined in the
struts-config.xml) is used by the controller to determine the default attribute values for name,
scope, type, etc. The focus is used to set the current focus to the specified field.

Each of the tags that relate to form fields has a set of common attributes that can be set
on any of the tags. These attributes include

m name. The ActionForm Bean associated with this form.

m property. Name of the request parameter that is included with this submission, set to the
specified value.

m value. The value of the label to be used with this element and the value of the specified
request parameter.

= All of the ten or more JavaScript event handlers (onclick, onfocus, onchange, etc.).

m gccesskey. The keyboard character used to move focus immediately to this element.
® tabindex. The tab order on the form for this element.

m style. CSS styles to be applied to this HTML element.

m styleClass. CSS style sheet class to be applied to this HTML element.

Looking at Table 8.1, it’s clear that any of the other form input fields you’d expect are
available.

As an example, if you want to have multiple checkboxes on a form, you can define your
ActionForm to have methods like

public void setMyParams(String[] myParams) {...}
public String[] getMyParams() {...}

and the Form Bean should be populated with the correct parameter values. This is helpful for
HTTP parameters that can have more than one value. Then you can define checkboxes in your
form like

<html:multibox property="myParam" value="one" />
<html:multibox property="myParam" value="two" />
<html :multibox property="myParam" value="three" />

A call to getMyParams() from your Action would return an array containing the Strings “one”
and “two” if you had both of those checked on your html form.

84 Chapter 8: Working with the Struts Custom Tag Libraries m

8.3.2 Working with Errors and Messages

The <html:errors> tag is used to conditionally display a set of error messages. These messages
are errors that have been set by our Action classes by using

ActionErrors errors = new ActionErrors();
followed by something similar to
errors.add(ActionErrors.GLOBAL_ERROR, new ActionError("error.database.missing"));

The saveErrors() method on the Action class is called to save the specified error messages
keys.

if (lerrors.empty()) {
saveErrors(request, errors);

}

The message keys are contained in the ActionErrors object and placed in the ap-
propriate request attribute. The request attribute key is Action.ERROR_KEY that resolves to
“org.apache.struts.action.ERROR.” This attribute key is what allows the tag to gain access to
the errors that are set.

If the ActionErrors Bean is not found by the JSP, nothing will be rendered on the JSP when
using the <html:errors> tag. In order to use this tag successfully, you must have defined an
application scope MessageResources Bean under the default attribute name that contains at least
errors.header and errors. footer message keys. These keys from our ApplicationResources file
look like

errors.header=<h3>Validation
Error</h3>You must correct the following error(s) before proceeding:
errors.footer=<hr>

It is typical to use in the header/footer to engender the display of a bulleted list of
errors, but it’s totally up to you how to format the header and footer. Some HTML tags are
included just as examples for how to highlight error messages, but it is up to you how you
want to display the errors.

The <html:messages> tag makes it easy to send both informational messages and errors
to the same page at the same time. You can then render them differently if you want. Messages
(ActionMessages object) are an encapsulation of an individual message (ActionMessage object).
The message consists of a message key that is used to look up message text in an appropriate
message resources database or file. Each message has up to four placeholder objects that can
be used for parametric replacement in the message text.

Working similarly to errors, messages can also be set in an ActionForm class, Action
class, or business logic component and stored as an ActionMessages object, ActionErrors
object, a string, or a string array in the request scope. If such an ActionMessages Bean is
not found, nothing will be rendered. To use this tag, you must define an application scope
MessageResources Bean under the default attribute name.

m 8.3 Using the Struts-html Tag Library 85

Messages can be used for various confirmations such as after a record has been added
or updated, as in the following snippet from our sample application:

ActionMessages actionMessages = new ActionMessages();
actionMessages.add(ActionMessages.GLOBAL_MESSAGE,

new ActionMESSAGE("record.inserted"));
return (mapping.findForward(Globals.FORWARD_CONFIRMATION));

The JSP that is being forwarded to just includes the following tag to render the message:
<html :messages/>

If you use messages for confirmations, make sure that there isn’t also other information
on the page that might require the user to refresh. If there is, then you are better off redirecting
to a status message page instead of forwarding because if a refresh is done on the original page,
it might cause a repost, which is probably not what you want. But remember, on a redirect you
get a new request so the ActionMessage in the request scope will be gone. One possible way to
get around this is to create an Object in session scope, and then access this object from your
status message page. Then when you’re done, remove the object from the session.

8.3.3 Completed Sample

Let’s look at a complete sample using our logon. jsp from the sample application. This partic-
ular JSP uses a variety of tags from the html library so you can see them in action. I'll skip over
explaining any of the standard html code so as not to bore you.

First, we have the JSP directive to set the scriptlet language, and then we include our
common taglib. jsp file. This is the file that contains the listing of all the taglibs we’ll be using.

<%@ page language="java" %>
<%@ include file="taglibs.jsp" %>

Then we set the html element with language attributes extracted from the user’s current
Locale object, if there is one. The locale is set to “true” to indicate that if there is no locale set,
a Locale should be recorded based on the current request’s Accept-Language header.

<html:html locale="true">
<head>
<html:base/>

If you use relative links in your page, you should place the <html:base/> tag inside the
<head> element of your page. It will render a base tag so that relative links will not appear to be
broken. The Bean tag library is used (we’ll be talking about it more in a minute) to get a message
from the ApplicationResource file based on the message key provided. This is the crux of using
internationalized messages strings. The <html :base> tag renders an HTML <base> element with
an href attribute pointing to the absolute location of the JSP. We use this tag because it allows
us to use relative URL references in the page that are calculated based on the URL of the
page itself. Usually, the browser would normally resolve relative paths against the URL to
which the most recent submit took place. In particular, this makes things like relative URIs in

86 Chapter 8: Working with the Struts Custom Tag Libraries m

an element resolve against the URI of the JSP even though the URI of the controller is
still showing in the location bar.

<title><bean:message key="logon.title"/></title>
</head>
<body bgcolor="white">

The next line is interesting because it shows how you can mix and match standard HTML code
with Struts tags. We are displaying an image, but we’re allowing the message to be pulled from
the resource file, so the alt description is displayed in the appropriate language.

<img src="sblogo.gif" alt="<bean:message key="image.switchback"/>" align="left"/>
Display any error messages that were set by our Action class.

<html:errors/>

<html:form action="/logon" focus="userName">
<table border="0" width="100%">
<tr>
<th align="right">
<bean:message key="prompt.username"/>
</th>
<td align="left">

Our first input field is a text field. The name we use for the property value is the same
name that must be used in the ActionForm Bean for the setter/getter methods in JavaBean
naming convention format, that is, setUserName(value), getUserName().

<html:text property="userName" size="15" maxlength="15"/>
</td>
</tr>

<tr>
<th align="right">
<bean:message key="prompt.password"/>
</th>
<td align="left">

The next input field is a password field. The redisplay attribute indicates whether or not
existing values will be redisplayed if they exist. Since this is a password field, redisplayed values
show as asterisks on the visible page. However, the clear text of the actual password value
will be visible though the Show Page Source menu option of the client browser if redisplay
is set to true. Since this is a Logon page, we don’t want the password visible at all, so we
set redisplay to false. Setting the redisplay to false actually causes the password field to be
left empty.

<html :password property="password" size="15" maxlength="15"
redisplay="false"/>

m 8.3 Using the Struts-html Tag Library 87

</td>
</tr>

<tr>
<td align="right">

Then we have our normal submit and reset buttons. The property attribute on the submit
form is important so that your Action class can use it to figure out what logic must be executed.
The value property is used both to label the button and to set the value of the field. In this
sample, we are setting this value by using an internationalized string from the resource file.
We could simply have a value="Logon" property, but creating the button the way it’s shown
will create fewer headaches when your boss tells you your application has to ship to China . ..
right now. The Logon page will be rendered as shown in Figure 8.1.

3 CD Manager Logon - Microsoft Internet Explorer - |EI|£|
J File Edit WYiew Favorites Tools Help
0 = D fa Q Gl 4 >
Back Farward Stop Refresh Home: Search Favarites Histaory
Jﬁddress I@ http:”‘lZ?.D.D.l:BDBD!chanagerSampleIIognn.jsp;jsessinnid=446054611483933?15?4F\08106623j ﬁGD “Links »
J Go glﬁ‘-l j §§i5earch web @ Search Site | IPERERERR » JNUrtUn antivirus 1 -
User Name ||
Passwurdl
o
g)wered by WORKE W rm
truts wmy
[-]
|&] Done [[[internet v

Figure 8.1: Logon screenshot.

88 Chapter 8: Working with the Struts Custom Tag Libraries m

The property attribute can be helpful in determining logic because if you have multiple
submit buttons on a form, you can set the property value to be the same for all of them. Then
when the form is submitted, check the value field to see which action was performed and what
needs to be executed.

Another advantage worth pointing out about using the <bean:message> for the value is
that if you have multiple submit buttons, and you are doing comparisons, you can simply do a
lookup on the message key in your Action class and you’ll be guaranteed that your comparisons
are correct, regardless of the language the application is running in.

<html:submit property="action" >
<bean:message key="button.logon"/>
</html:submit>
</td>
<td align="left">
<html:reset/>
</td>
</tr>

</table>
Lastly, we close out our form, and page.

</html: form>
</body>
</html:html>

8.4 Using the Struts-bean Tag Library

The Struts-bean tag library contains tags that are used to manipulate Beans. This includes Bean
creation, in all scopes, as well as rendering tags for specific Bean properties. JavaBeans play an
important role in JSP technology as probably the main component model. Many of you might
already be familiar with the standard <jsp:useBean> tag. This tag is used to create a Bean and
create named scripting variables that are accessed within a scriptlet.

The same question that we applied to the Struts-html library might apply here.
Why do I need another set of tags to duplicate functionality already provided in a stan-
dard JSP tag? The answer (again) is that the Struts-bean tags provide a number of en-
hancements to the basics provided by <jsp:useBean>. However, if you are going to want to
use <jsp:getProperty> or <jsp:setProperty>, you have to have the reference created using
<jsp:useBean>.

The first reason for using the Struts-bean tags over <jsp:useBean> is the extended syntax
available for Bean properties. The extended syntax (which we discussed in Section 8.2) allows
properties to be references using simple, nested, and indexed names. Second, it’s possible
to automatically create new Beans in any scope from a variety of objects (such as headers,
parameters, cookies) and APIs associated with the current request or servlet container with a

B 8.4 Using the Struts-bean Tag Library 89

Table 8.2: Struts-bean tag reference.

Tag name Description

cookie Define a scripting variable based on the value(s) of the specified request cookie

define Define a scripting variable based on the value(s) of the specified Bean property

header Define a scripting variable based on the value(s) of the specified request header

include Load the response from a dynamic application request and make it available as
a Bean

message Render an internationalized message string to the response

page Expose a specified item from the page context as a Bean

parameter Define a scripting variable based on the value(s) of the specified request parameter

resource Load a web application resource and make it available as a Bean

size Define a Bean containing the number of elements in a collection or map

struts Expose a named Struts internal configuration object as a Bean

write Render the value of the specified Bean property to the current JspWriter

simple tag. Third, it’s possible to render textual output from a Bean that can be included in
the JSP response. Table 8.2 shows the tags available.
All the Struts-bean tags share a common set of tag attributes.

® jd. Names the scripting variable as well as the key value used to locate this Bean in the
scope defined by the scope attribute.

m name. Defines the key value by which an existing Bean will be looked up in the scope
defined by the scope attribute.

m property. Defines the name of a JavaBeans property, of the JSP Bean identified by the
name, and (optionally) the scope attributes.

m scope.Identifies the JSP scope (“page,

" “request,” “session,” or “application”) within which

a particular Bean is searched for using the key specified (by the name attribute), or created
(under the key specified by the id attribute). The default is page scope.

Let’s look at how we use some of the Struts-bean tags.

8.4.1 Using Bean Tags

<bean:define> is a tag that serves a few purposes: creation of new Beans, copying other Beans,
or copying just a property of another Bean. Beans created default to page scope unless you
specify otherwise by using the scope attribute. A good example of using <bean:define> is this.
Let’s say you have accomplished some business logic in a Bean in your Action class. Then you

90 Chapter 8: Working with the Struts Custom Tag Libraries m

want to save this information, in whatever scope is appropriate, for later access through a JSP.
The code in the Action class might look something akin to

MyBean myBean = new MyBean();
myBean.setResult("some result");
session.setAttribute("result", myBean);

Then it’s possible to write JSP scriplet code for pulling out the attribute and then making the
appropriate method call on the Bean.

<%

MyBean myBean = (MyBean)session.getAttribute("result");
if(myBean!=null) {

String result = myBean.getResult();

%>

Then you do something appropriate with the result in your JSP. The problem with this is
that you included scriplet code into your JSP files, which is something that is best avoided for
the reasons discussed earlier in the book.

A better way to do this is to use the <bean:define> tag by including something like

<logic:present name='result'>
<bean:define id='myBean' name='result' scope='session'
toScope="page' type='MyBean' />
<bean:include id='myResult' page='<%= myBean.getResult() %' />
</logic:present>

This makes the Bean and all of its methods available to the JSP and accessible throughout
your JSP.

The id is the name of the scripting variable being created, and the name is used to locate
the object in the scope specified. The toScope is used to determine what scope the new Bean
should be created in, and the type is the class name of the type of Bean to create. In this sample,
we also used the <bean:include> to make a dynamic call to the Bean and then we stored the
return in a scripting variable myResult. myResult is then used as <% myResult %> when needed.
Notice we are using a tag from the Struts-logic tag library, <logic:present>, because if the Bean
has not been placed in one of the scopes of the JSP, we don’t want to execute this code.

Similar functionally holds for the other Bean tags that have to do with creating scripting
variables: cookies, header, page, and parameter. It is possible to create Beans from any of these
objects by using the appropriate tag. For example, if you are passing a query parameter to a
JSP, you can use

<logic:present parameter="query">
<bean:parameter id="query" name="query"/>

Query parameter = <%=query¥%>
</logic:present>

We can also combine Bean tags, for example, <bean:cookie> and <bean:write>. We
use <bean:cookie> to get a cookie value in a request and then access the values using the
<bean:write> tag. The <bean:write> retrieves the value of the specified Bean property, and

m 8.5 Using the Struts-logic Tag Library 91

then renders it to the current JspWriter as a String. We create a scripting variable called
myCookie that is looked up using the standard JSESSIONID. We default the value to UNDEFINED
if it doesn’t exist. Then we access a few of the properties that are associated with cookies to
print their values.

This tag understands the syntax for the simple, nested, and indexed property references
that we’ve discussed. Notice that we have set ignore to “true.” The reason is that if the property
doesn’t exist, then the <bean:write> will throw an exception. To prevent this exception, we must
change ignore’s default value, which is “false,” to “true.”

<bean:cookie id="myCookie" name="JSESSIONID" value="UNDEFINED"/>
<bean:write name="myCookie" property="name" ignore="true"/>
<bean:write name="myCookie" property="maxAge" ignore="true"/>

The <bean:message> tag also writes to the JspWriter. This tag is used to render an
internationalized message. You'll recall (I hope) that we have seen this tag a few times in
samples already. The <bean:message> tag retrieves a message for the locale specified using a
message key. There can be up to five parametric replacements. This is why you see {0} or {1}
in the message resource files. These are placeholders for parameters that might be passed in.
Messages can be retrieved by using the attribute key, or retrieved directly from the resource
file, or retrieved indirectly using the name and property attributes to get the value from a Bean.
We demonstrate both uses.

<bean:message key="button.Login">;

<bean:message key="message.welcome" argl='<%= user.getUserName() %>'>;

8.5 Using the Struts-logic Tag Library

The tags in the Struts-logic tag library are used to make a best effort to keep scriplets out of
your JSPs. These tags are used to perform conditionals, looping, and basically anything that
requires iteration. These tags provide four basic groups of functionality.

®m Value comparisons
m Substring matching
m Presentation location

m Collection manipulation

Table 8.3 shows all the available tags in the logic library.

Let’s look at some of the tags in each of these categories. The sample code included here
is available for viewing and running from the Logic Samples link on the Main Menu of our
sample application.

92 Chapter 8: Working with the Struts Custom Tag Libraries m

Table 8.3: Struts-logic tag reference.

Tag name Description

empty Evaluate the nested body content of this tag if the requested variable is
either null or an empty string

equal Evaluate the nested body content of this tag if the requested variable is
equal to the specified value

forward Forward control to the page specified by the specified ActionForward
entry

greaterEqual Evaluate the nested body content of this tag if the requested variable is
greater than or equal to the specified value

greaterThan Evaluate the nested body content of this tag if the requested variable is
greater than the specified value

iterate Repeat the nested body content of this tag over a specified collection

lessEqual Evaluate the nested body content of this tag if the requested variable is
greater than or equal to the specified value

lessThan Evaluate the nested body content of this tag if the requested variable is
less than the specified value

match Evaluate the nested body content of this tag if the specified value is an
appropriate substring of the requested variable

messagesNotPresent Generate the nested body content of this tag if the specified message is
not present in this request

messagesPresent Generate the nested body content of this tag if the specified message is
present in this request

notEmpty Evaluate the nested body content of this tag if the requested variable is
neither null nor an empty string

notEqual Evaluate the nested body content of this tag if the requested variable is
not equal to the specified value

notMatch Evaluate the nested body content of this tag if the specified value is not
an appropriate substring of the requested variable

notPresent Generate the nested body content of this tag if the specified value is not
present in this request

present Generate the nested body content of this tag if the specified value is
present in this request

redirect Render an HTTP redirect

8.5.1 Value Comparisons

It is often necessary to do some type of value comparison of property values. The comparison
tags are comprised of equal, notEqual, greaterEqual, lessEqual, greaterThan, 1essThan, present,
and notPresent. Whenever using one of these tags, it is necessary to specify a value to be
compared as well as what object is being used. This object would be one of the following:

m 8.5 Using the Struts-logic Tag Library 93

cookie, header, parameter, property, or name. So, for example, if we wanted to check what
type of browser our client is running and then display it only if it is IE 5.5 on Windows 2000,
we can do this with the following code snippet:

<logic:equal value="Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"
header="User-Agent">
<bean:header id="browsertype" name="User-Agent"/>
Your browser User-Agent type is :
<bean:write name="browsertype" ignore="true" />
</logic:equal>

Obviously, you can see that this can be quite useful for keeping pages cleaner in browser-
dependent code. This is just one example of using a type of value comparison. We used a
header example, but if you do a comparison against a property, the variable to be compared
with value is the property of the Bean specified by the name attribute. Again, it’s possible to
do property references as simple, nested, or indexed, or any combination. Using the scope
attribute, the scope for the Bean to be searched can be specified. This includes your standard
JSP scopes—page, request, session, application, as well as the default, “any scope.”

8.5.2 Substring Matching

There are two tags, <match> and <notMatch>, that can be used for substring matching in the
logic library. These two tags take the same arguments as the sample in the value comparison
tags. This means you can substring items specified by cookie, header, parameter, property, and
name. There is also an attribute called location that specifies where to match in the string.
Possible values for the location attribute are “start” to be matched at the beginning of the
string, or “end” if the substring will be matched until the end of the string. An example of
using this tag is if you wanted to put a status message on a page. You could pass a parameter
to the JSP and then use the substring tag as follows:

<logic:match parameter="type" value="Search" location="start">
Searching. ...
</logic:match>

Another, more complicated example is that if there is a property value of interest in a
Bean that is being used on a JSP, we can match (or notMatch) the value of the property and then
do the necessary actions. The following code snippet shows this by searching the property
myValue to the end of the string for the value “Test”:

<logic:notMatch name="myBean" property="myValue" location="end" value="Test">
...do appropriate presentation here...
</logic:notMatch>

8.5.3 Presentation Location

Presentation location has to do with determining how one page gets to another. Basically, this
comes down to whether a forward or redirect should be done. The <logic:redirect> tag will

94 Chapter 8: Working with the Struts Custom Tag Libraries m

send a redirect to the client’s browser. This includes URL rewriting if the container supports
it. This is done using the HttpServletResponse encodeRedirectURL() method and includes the
session ID in the URL. URL rewriting is one technique for saving state information between
pages. The information is stored as part of the URL as additional parameters. URL rewriting
is sometimes used for session management. This is a similar concept to saving information in
cookies. URL rewriting is sometimes used when a browser has cookies turned off. The downside
of using URL rewriting is that if a user bookmarks a link that was pointed to by a URL rewrite,
the link will not be valid later when the session expires.

The base URL is determined by having at least one of the following attributes specified:

m forward. Name of an ActionForward defined in the <global-forwards> section in the
struts-config.xml, and use the appropriate context as specified.

m href. Defined URL argument, used unchanged except for possible URL writing for the
session ID.

®m page. Uses value as an application-relative URI and generates a server-relative URI by
including the context path and application prefix. This also allows for the ability to
dynamically add query parameters to the generated URL.

So we might have <logic:redirect forward="success"/>, which uses the logical forward
name from our sample application and then forwards us to the mainMenu. jsp as specified in our
<global-forwards> definition, and <logic:redirect page="/mainMenu.jsp"/>, which redirects
us using the context-relative path of our mainMenu. jsp.

When using the <logic:forward> tag, a global action forward is specified. The forward tag
has one attribute called name, which is the logical name of the ActionForward. You can specify
whether the specific global forward redirects or forwards when executed by using the redirect
attribute in the struts-config.xml file. We talked about this in Chapter 2. The processing in
this tag is identical to that performed by the Struts Controller Servlet when an ActionForward
is processed from an Action class return.

A simple sample is <logic:forward name="logon"/>.

8.5.4 Collection Manipulation

The last area of the Struts-logic library tags we’ll examine are those used for manipulating
collections. In fact, this is really only one tag, the <logic:iterate> tag. The iterate tag is used
for executing its body content once for every element inside the specified collection. The only
required attribute is id, which is the name of a page scope JSP Bean that contains the current
element of the collection on each iteration. There are, however, quite a number of optional
attributes to give you more control over which collection to use and how to iterate over it.
Table 8.4 describes each attribute and its purpose.

When using the <logic:iterate> tag, the collection must be one of the following Objects
or the iteration will not take place:

m An array of Java objects, including primitive types in 1.1.

® An implementation of java.util.Collection, including ArrayList and Vector.

m 8.5 Using the Struts-logic Tag Library 95

Table 8.4: Attributes of <logic:iterate> tag.

Attribute Description

collection A runtime expression that evaluates to a collection object that will be iterated.

length The number of iterations to perform on the collection. This is either an integer
value or the name of a JSP Bean in any defined scope of type java.lang.Integer that
defines the value. If the length is not present, there will be no limit on the number of
iterations performed.

indexId The name of a page scope JSP Bean that will contain the current index of the collection
on each iteration.
name The name of the JSP Bean containing the collection to be iterated. This is used if the

property attribute is not specified. If there is a property attribute, the name plus the
property of the Bean are used to call the getter method on the property to return a
collection.

offset The zero-relative index of the starting point at which entries from the underlying
collection will be iterated through. If not present, the collection will be iterated from
the beginning.

property Name of the property, of the JSP Bean specified by name, whose getter returns the
collection to be iterated.

scope The standard JSP scopes (page, request, session, application) to search for the Bean
named by the name property. The default is “any scope” if not specified.
type Fully qualified Java class name of the element to be exposed through the JSP Bean

named from the id attribute. If not present, no type conversions will be performed.

= An implementation of java.util.Enumeration.
® An implementation of java.util.Iterator.

= An implementation of java.util.Map, including HashMap, Hashtable, and TreeMap.

A Map is treated slightly differently because the exposed object is actually of type
Map.Entry. A Map.Entry has two properties: a key that is the item is stored in the Map, and
a value that corresponds to the specified key. For checking collections that can contain null
values, you can use the <logic:present> and <logic:notPresent> tags to check for the Page
scope attribute specified by the id attribute. In the case of a null value, no attribute will be
present for that loop iteration. This prevents having a runtime exception thrown if you try to
access a null value. The <logic:iterate> tag is a perfect example of a tag that will more than
likely be deprecated in favor of the iterate tag provided in JSTL in the near future. One of the
reasons for this is that as application container vendors supply implementations for the JSTL,
I suspect we will see performance optimizations for things like iterating over collections that
will make it worthwhile to use the JSTL tags.

When specifying a type attribute, the actual elements of the collection must be assignment
compatible with this class or else a request time ClassCastException will be thrown.

96 Chapter 8: Working with the Struts Custom Tag Libraries m

Let’s look at a sample using the <logic:iterate> tag. Assume we create a Bean in our
JSP for demonstration. This Bean could actually exist because an Action has placed it in the
appropriate scope. It might include results of some business logic that took place in the Action.
For the purposes of this sample, we’ll just define an ArrayList and save it as a Bean called “list”
in our JSP page.

<%
{
java.util.Arraylist list = new java.util.ArraylList();
list.add("Iteml");
list.add("Item2");
list.add("Item3");
list.add("Itemd");
pageContext.setAttribute("list", list, PageContext.PAGE_SCOPE);

}

%>

Now we can iterate over the ArrayList by referencing the Bean by the name we assigned
to it: “list.” We set our indexId to be the value of a Bean called “index” so that we can access
the current index value in the iteration. We check for the presence of the Bean item in each
iteration so that if we had a null value in our array, we can just skip over it.

<logic:iterate id="item" name="list" indexId="index">
<logic:present name="item">

<bean:write name="item"/> [<bean:write name="index"/>]
</logic:present>
</logic:iterate>

This iteration produces the following:

Iteml [0]
Ttem2 [1]
Item3 [2]
ITtemd [3]

The samples included in the CD Manager application demonstrate a number of ways to
use the iteration tag that you can use for further reference. As I'm sure you can see, there are
many uses for iterations in a JSP, for example, when traversing through result sets, listing items,
and producing links. The types of usages go on and will be left to your creativity. For other,
more complicated examples and uses of the iteration tag, check out the contrib folder included
on the Struts download. There are a number of project references that use the <logic:iterate>
tag that could prove helpful to you.

B 8.6 Using the Struts-nested Tag Library 97

8.6 Using the Struts-nested Tag Library

The whole point of having nested tags is so the tags can relate to each other and describe
the structure of the model they’re managing. The assumptions made by the tags simplify the
necessary coding. Using nested tags allows for Beans to be nested. What this means is that
one Bean can hold a reference to another Bean. The Bean that holds the reference is called the
parent. The Bean that is the reference is called the child. The properties of parent tags define
the nested property for the child tags’ properties. If you are a Struts 1.0 developer, you are
probably breathing a sigh of relief knowing that you won’t have to mangle code any longer to
render a display of a list within a list.

The Struts-nested tag library was introduced in Struts 1.1. You are already familiar with
almost all the tags in this library since they extend the base Struts tags that we've already talked
about. This includes tags from the Html and Logic libraries, except when they are prefixed
with a nested namespace. So, for example, if we are nesting an <html:1ink> tag, we would use
<nested:link> instead. There are also tags new to the Struts-nested tag library. The new tags
include <nested:root> and <nested:nest>. The <nested:root> is used to indicate that you are
starting a nested scope. This tag is used if <html: form> is not being used. The <html: form> (for
backward compatibility) or <nested: form> tags will automatically start a scope for you.

The <nested:nest> represents a nesting level for additional markup so that the hier-
archy is defined. The <nested:nest> and the <nested:iterate> are the only two tags in the
library that affect the hierarchy. Other tags act either as parent tags or as base tags. A par-
ent tag doesn’t affect the hierarchy but can have body content. A base tag has no body
content. Examples of parent tags include those related to logic, such as <nested:empty>
and <nested:notEmpty>, as well as the various comparison tags such as <nested:equals>,
<nested:greaterThan>, or <nested:present>. Examples of base tags include <nested:text>,
<nested:image>, and <nested:link>.

The difference between using non-nested tags and tags from the Struts-nested library is
that using the nested version allows the tags to relate to each other in a nested hierarchy. The
fundamental logic of the original tags doesn’t change, except that all references to Beans and
Bean properties will be managed in a nested context using the dot notation that we have already
seen when using properties. When building complex pages, it is highly likely that you will want
to use the nested features. This makes pages much easier to write and maintain since it allows
for the logical flow to be maintained without having to do workarounds, as was required before
the 1.1 release.

When dealing with parent and child tags, there must be a getter defined in the parent Bean
so that it can provide a reference to the child Bean for access. For example, public ChildBean
getChild() will return ChildBean. This getter requirement is true for all nested properties’
methods. So when Struts needs to get or set a property in the child Bean, it will call this
method getChild() when it gets a reference to the ChildBean, and from which it can invoke the
appropriate property methods.

Tags can play either a parent role or a child role depending on how they are being used in
the situation. The topmost parent in the hierarchy is called the root. The properties of parent
tags define the nested property for the child tags’ properties. Think of this as you might think

98 Chapter 8: Working with the Struts Custom Tag Libraries m

NestedForm . ArtistBean , TitleBean
nested List #1 nested List #2

artists ' artist ' title
0..* titles 0..* genre

Figure 8.2: Nested list diagram.

of inheritance. The child inherits from the parent. Because of the fact that tags can be either
a parent or a child, there must be a way to tell when a tag is meant to be a parent and when
it’s not part of the hierarchy. This quandary is solved by having two separate categories within
the Nested library, parent and nonparent.

If a tag implements org.apache.struts.taglib.nested.NestedParentSupport, it may be
used in a hierarchy as a parent tag. All other tags that are meant to be treated as just markup
elements (as in the case of a select list) but not as a nested parent will be skipped in the
hierarchy. The root tag specifies the Bean at the top of the hierarchy.

Using nested tags makes your pages much simpler. In fact, it makes it possible to do
some pretty sophisticated rendering of lists within lists with just a couple of lines of JSP code.
Let’s walk through a sample using the structure of our nested lists as shown in Figure 8.2.

Our sample application allows for displaying all the CDs in the database both with and
without nested tags, and what we’re looking at is the displayNested.jsp code. We will go
through this line by line.

First, we make use of a custom tag that is specific to our application called <app:display>.
The attribute is used because we reuse this tag for both nested and non-nested display by
setting the useNestedForm to “true” or “false,” respectively.

<app:display useNestedForm="true" />

Using this tag provides the mechanism for opening a connection to the database, making a
query, and iterating through a result set to place each row of information in the appropriate
Bean. That’s quite a lot of work accomplished by a one-liner. Granted, in a more structured,
enterprise-worthy application, you would want Data Access Objects (DAO) defined to handle
your database interaction. But again, this application is for demonstrating how to implement
various tasks. Where those tasks actually live is up to the designer.

It is important at this point to mention how the Beans are set up so that you under-
stand how it’s possible to use the <nested:iterate> tag. For complete code details, view the
cdmanager. forms.beans package in the sample application. The abbreviated version is as fol-
lows. There is a parent Bean called ArtistBean. This Bean holds an artist property as well as an
ArrayList of titles. This ArrayList is composed of child Beans called TitleBean. Each TitleBean
holds a title and genre property. As we mentioned, each parent must have a way to get all its
children. Our ArtistBean has a public method called getTitles() that returns all the objects
in the ArrayList.

Now we can look at the nested calls. We must indicate that we are at the root of a nested
hierarchy. It is possible to use either the <nested:root> or the <nested:form> tag.

m 8.6 Using the Struts-nested Tag Library 99

<nested:form action="/nested">

Next, we start to iterate through our result set. Here is where the Beans come in. The
ArtistBean is already in our session because we had defined access to the nestedForm. The
nestedForm has a reference to an ArrayList of ArtistBeans. This action is defined in the web.xml
file, and it looks like other actions that we have already defined.

<action path="/nested"
type="cdmanager.actions.DisplayAllAction"
name="nestedForm"
scope="session"
input="/mainMenu.jsp">
<forward name="success" path="/displayNested.jsp"/>
</action>

So we are back to actually starting the iteration. The beauty of the nested tags is that they
hide all these details from the JSP and make it quite easy to implement lists of lists. Before
this, such implementation was a real pain to accomplish. So let’s keep going.

In the first scope, we are accessing the property artists in the nestedForm. This is actually
a list.

<nested:iterate property="artists">
We access the artist property of each ArtistBean.
Artist: <nested:text property="artist" />

There are a number of titles associated with each artist, so we begin to iterate through each
title by going one step further in the hierarchy. Now we are in the TitleBean.

<nested:iterate property="titles">

Each TitleBean has a title and genre property. Notice that the properties are relative to the
current scope of the nest.

<table cellpadding="2" cellspacing="0" border="1">

<tr>

<td bgcolor="#008080">Title: <nested:text property="title" /></td>
<td bgcolor="#008080">Genre: <nested:text property="genre" /></td>
</tr>
</table>

We are sure to close out each of our nested scopes.

</nested:iterate>
</nested:iterate>

And finally, we put an end to our hierarchy root.

</nested: form>

100 Chapter 8: Working with the Struts Custom Tag Libraries m

You can see from walking through this example that once you have your Beans set up,
it is fairly painless to implement an otherwise rather complicated display of doing nested list
iterations.

8.7 Using the Struts-template Tags

The tags provided in the Struts-template tag library are useful when you have dynamic JSPs
that require a common format. Using the Struts-template tags allows for a convenient way to
handle working within a given format. It also makes it fairly painless to make layout changes
to applications when you are deep into a project and all of a sudden the GUI layout changes.
The Struts-template tags have remained the same between Struts 1.0.x and 1.1. Using Struts
templating (or most templating for that matter) falls into the implementation details of the
Composite View design pattern. This presentation-tier pattern is used to create aggregate Views
from atomic subcomponents. Think of these subcomponents as the building blocks all of us
engineers played with when we were little. We would use those blocks and assemble them
to create great skyscrapers, or at least what appeared to be skyscrapers to five year olds, by
placing them one on top of the other. When using the Composite View pattern, each portion
of a template can be included dynamically into the final page, but the page layout is managed
separately from the content.

There are three tags that work together. They are listed in Table 8.5. These tags
work in concert with one another. The attributes associated with each are straightforward.
<template:get> requires the name of the content to be inserted. The value of the name must
match the name property used in the put tag. The get tag is used within a template file to deter-
mine where the content specified must be inserted. The <template:insert> takes the name of
the template file as its name attribute. It uses what the <template:put> tag specifies in its content
attribute as what will be inserted into the template. However, the layout itself is determined
by where the <template:get> tags are placed in the template file. Using the direct attribute
(which is optional) of <template:put> determines whether the content should be included or
printed to the JspWriter. By default, the content is included.

The best way to understand how templates work together is to see them in action. So
let’s go through a sample.

Table 8.5: Template tag reference.

Tag Purpose

<template:get> Gets content from the request scope and either includes the content
or prints it

<template:insert> Includes a template into the JSP
<template:put> Puts content into request scope

m 8.7 Using the Struts-template Tags 101

First, we create a template file. We’ll call this file something original like template.jsp.
This is the template used throughout the application. Think of the template file as the shell,
or outline, for how your pages will be presented. The template.jsp looks like

<%@ include file="taglibs.jsp" %>
<html:html locale="true">

<head>

<title><template:get name='title'/></title>

</head>

<body background='white'>

<table>

<tr valign="top'>
<td>
<table>
<tr>
<td><template:get name='header'/></td>
</tr>
<tr>
<td>
<html:errors/>
<template:get name='content'/></td>
</tr>
<tr>
<td><template:get name='footer'/></td>
</tr>
</table>
</td>
</tr>
</table>
</body>

</html:html>

Basically, we are defining how the table structure will look and where each portion of
the page will live in it. We include our taglibs. jsp file because we must be able to resolve the
various Struts tags that we are using. Then we define exactly what our layout will look like.

We are defining four request variables. In essence, these are the parameters of the
template. Each specific page defines its own content to be included in the template. Remember
that the names used in the <template:get> must match those used in the <template:put>.

Now that we have our layout defined, let’s see how to use it within pages.

8.7.1 Creating Pages with Template Structure

We separate each page to be displayed into two logical units. One unit is what I like to call
the page shell, where we define the files to be included for this page. The other is the actual

102 Chapter 8: Working with the Struts Custom Tag Libraries m

page content. In essence, the part that usually changes between pages is the content. But it
should be noted that you have the ability to change the actual values of the headers or footers
or whatever you've defined in your template on a page basis.

For example, say on most pages you want to have a copyright statement as your footer
but on one page, you want a privacy statement as well. The layout of the page will be consistent
with all the others in the application, but the content of the footer on that one page might be
different. If we look at our login. jsp, we find the following code:

<%@ include file="taglibs.jsp" %>
<template:insert template='/template.jsp'>
<template:put name='title' content='CD Manager Logon' direct='true'/>
<template:put name='header' content='/header.jsp' />
<template:put name='content' content='/logonContent.jsp'/>
<template:put name='footer' content='/footer.jsp' />
</template:insert>

What’s being done is that we are applying the template.jsp that we defined earlier. In
doing so, we are specifying the four areas of our template that are basically parameterized.
Demonstrating the use of the direct attribute, we are specifying the title to be printed into
the file. We use a standard header and footer that we defined. The content is specific to this
particular page and specified as the logonContent.jsp. Each page will more than likely have
specific content to include. You can view the file in more detail from the sample application
download.

There’s a quick point to make about the title shown in the example. It would be preferable
to have something like

<template:put name='title' content='<bean:message key="logon.title" />'
direct="true'/>

However, doing so will not work because what will be rendered at runtime is not the message
but the printing of “<bean:message key="logon.title" />" on the page without parsing the tag.
The reason for this is that you can’t use a JSP tag as the value of another JSP tag’s attribute.
You must use a JSP expression instead. So to do this correctly, use a Utility class to get the
message from the resource file.

<template:put name='title' content='<%= Message.getMessage("logon.title") %'
direct="true'/>

The header. jsp and footer. jsp for this application are nothing more than the inclusion
of image files. We could have used HTML files, but the reason we’re not using them is that I
wanted to include Struts tags in these files so that the strings for the alternate text for the
images could be internationalized.

As you can see, templates have many advantages. If you are working on a large application,
templates make it much easier to maintain the look and feel of the application. When changes
have to be made, they can be made in one place—basically, just the template file itself—and
then the page structure will be correct for all the pages that use it. It’s very convenient.

m 8.8 Summary 103

Another use for templates is in applications that have different types of clients, each (or
many) of which wants a different page header and/or footer along with a different “skin” (i.e.,
look and feel) for a page. After logging in, you could get the name of the header and footer JSP
for that particular page from the user’s profile. As for skinning the page (colors, fonts, etc.),
you could include a CSS style sheet directive in the template itself (using the .css filename for
the client from the user’s profile). While this type of usage is probably a bit more advanced
than what is covered in this book, it’s thrown in here for you to see different possible uses of
templating.

8.8 Summary

By now, you should be well on your way to having a good (if not better than good) understanding
of the tags that are available in Struts and how to use them.

Five tag libraries are available with Struts 1.1: Struts-html, Struts-bean, Struts-logic, Struts-
nested, and Struts-template. Each contains multiple tags. We have talked about, and walked
through, a number of examples that detail how to use various tags from each of the tag libraries.
There is a good chance that most anything you need to do can be accomplished through the
use of existing tags that are either provided with Struts or provided from other sources such
as the JSTL or Jakarta Taglibs project.

chapterg

Internationalizing Your
Struts Application

Internationalization is often called 118N, for the 18 letters between I and N. In the global
market of software development, it is entirely possible, and most probable, that the application
you write today will be running in other languages tomorrow. This chapter focuses on what
must be done to ensure that your Struts applications can easily and quickly be internationalized
and localized. If you need a full-blown tutorial on internationalized programes, visit the tutorial
at java.sun.com/docs/books/tutorial/il8n/ .

9.1 However You Say It: Hello, Bon Jour, Hola, Ni Hao

In general terms, a locale is a geographic, political, or social region. Usually locale refers to the
language support for a particular area. A locale can be specified by a standard lowercase two-
letter code. It is also common to specify a country code along with the language. This is done to
distinguish various dialects. English (en) spoken in the United States (en_US) is different from
English spoken in Great Britain (en_GB). I'd drink to this since I have been to Great Britain and
found at times that I had no idea what people were saying to me even though I recognized the
words . .. I think. And just so you know, it had nothing to do with the fact that we were in a
pub at the time.

Locales are represented by the java.util.Locale class.

If your application is internationalized, it means that your program can support multiple
locales. Localizing an application is the support for the specifics of a particular locale. We
will talk about how to set up and code your application so that you can take advantage of
international features for prompts and messages. This includes

m UTF-8

m [ocales

105

106 Chapter 9: Internationalizing Your Struts Application ®

m PropertyResourceBundles
» Formatted messages

® MessageResources

9.2 UTF-8

Java has always used Unicode character encoding with canonical 2-byte per character encoding.
This enables language scripts that require multibyte representation to be processed. Unicode
covers the principal languages in the Americas, Europe, the Middle East, Africa, India, Asia,
and Pacifica. I believe that covers just about everyone, at least on this planet.

Unicode Transformation Format (UTF-8) is used to represent character values in 1 to 4
bytes. This is a better performance encoding than using straight Unicode since most characters
will be ASCII characters and therefore require only 1 byte. If you want to take your mind off
an upcoming and dreaded visit to your dentist, you can read more details about UTF-8 at
www.unicode.org. Doing so will surely cure even the worst case of dental phobia.

Character encoding is handled within Java, so you don’t really have to worry about it.
The reason I mention UTF-8 is that you can set up your application server to encode in UTF-8
if you want to support multiple languages on the same JSP. You can then specify the character
set in your JSPs using a META tag like

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">
Or you can set the http response header directly in the JSP by using the page directive
<%@ page contentType="text/html; charset=UTF-8"%>

Not all browsers support META tags the same way, so the safer way is to include the directive.

9.3 Locales

The Locale is used to specify which of the localized language files to use. Each user can have
his or her own locale set so that multiple users can all access your application concurrently
while viewing it in different languages. Usually the locale is modified in the user’s session. By
using the Struts tag <html:html locale="true"> in the JSP, the default locale for that user will
be set in the user’s session. This value is usually the browser default locale that is indicated
by the Accept-Language header sent by the browser. It is easy enough to establish the locale
setting in whatever browser you use. That way you can force a locale setting so that you can
debug for other languages. For example, if we select French as our Locale by designating that
language in the “language preference” section in our browser configuration, the Logon screen
will appear as shown in Figure 9.1. However, if we set our Locale to Spanish, our Logon screen
appears as in Figure 9.2.

While the images in each screen remain the same in both figures, the text that is displayed
in each is correct for the specified locale.

B 9.4 PropertyResourceBundles 107

&= T Manager Logon - Microsoft Internet Explorer -10O] x|
| File Ede view Favorites Took Hep
| &« =2 @ [) | Q 7] 3 Eh- =) < =
Back Farward Stop Refresh Home Search Favorites History Ml Prict Edit
| adcress [&] kietp://127.0.0.1:8080] cdManagersampiefiogan. jspjsessiorid=ASD1A0A I DOFL 043297 0B097BE0BE32 ~| @6 ||Lnks”
| Go gle-| j @ Search Web @3 Search Ske |P"9'R’"" ¥ Page Info - Bt ~ PHigiaht]Nnrbm&ntih'i'us e
|
Nom d'utilisateur Iguest
Mot de passsl
Logon | Riinitialisation |
Powered by W
Struts wmy
=
5] || |op mreemer 4

Figure 9.1: French Logon screen.

9.4 PropertyResourceBundles

ResourceBundles are used to hold the text and messages used by your application. The
java.util.ResourceBundle is an abstract class that allows for subclasses to define localized
resources. PropertyResourceBundle is a concrete class of ResourceBundle. This class allows
name,/value pairs to be defined in a properties file in the format name=value. This can include
button labels or text strings—basically, anything that can be displayed to the user. These re-
sources are stored in a properties file that is specific to the locale. For example, our sample
application uses ApplicationResources.properties to hold the default key/message pairs. A
brief sample of the file is

index.logon=Log on to the CD Manager Sample Struts Application
index.title=CD Manager Sample Struts Application
index.heading=Welcome to the CD Manager Sample Struts Application!
logon.title=CD Manager Sample Struts Application-Logon
mainMenu.heading=Main Menu

mainMenu.title=CD Manager Sample Struts Application-Main Menu
mainMenu.logoff=Log Off

108 Chapter 9: Internationalizing Your Struts Application ®

2§ CD Manager Logon - Microsoft Internet Explorer - 10| x|
| File Edt Wiew Favorites Took Hep
| &« 0+ @ 4 a4 | @ Gd 3 Bh- 3 S =
Back Forward Stop Refresh Home | Search Favorites History Ml Prict Edit
| adcress [&] Fietp:/[127.0.0.1:8050/cdManagerSampleflogen,jspyisessiorid= 173626 ESABEDEEEM ~| @6 ||Lnks =
| Go gle-| j @ Search Web (@ Search Ske | PageRank Oy fooe Info - ElUp ~ S Highight]Nnrbon Antivius [-
|
Nombre de usuario l
Clmtraseﬁal
Emmrl Wolver a poner]
Powered by E\
Struts mg=oC
=
&1 Done || | meemet 4

Figure 9.2: Spanish Logon screen.

Here we see that each string used in the application has a name, such as index.logon, and an
associated message. The name (or key) values are what are used by the <bean:message> tag to
look up a specific key. For example, the index.jsp contains

<bean:message key="index.title"/>

What happens here is that the string “CD Manager Sample Struts Application” is replaced, after
the key lookup is done, into the correct file depending on the Locale setting that determines
the language to be displayed to the user. So if our Locale is “es” for Spanish, the string would
appear as “Aplicacion de CD Manager Sample Struts.”

To view the full default resource file, consult the sample application download. For
each language that your application supports, you create an appropriately named resource
file that has the translated text in it. For example, our sample application also supports
Spanish and French, so we have two additional resource files that follow the locale naming
conventions. These files are named ApplicationResources_es.properties for Spanish, and
ApplicationResources_fr.properties for French. If you change the default Locale in your
browser to be either French or Spanish, you will see the appropriate language text. The
default ResourceBundle for an application is defined in the struts-config.xml file for each
subapplication as

B 9.5 Formatted Messages 109

<message-resources parameter="cdmanager.ApplicationResources"/>

where the parameter includes the package structure of where your ResourceBundle is located.

The application’s message ResourceBundles are loaded by the JVM running Struts and are
therefore shared among all the users of a particular Struts web application. The only thing that
is unique to a particular user is the java.util.Locale object that indicates the user’s preference.
This makes it possible for users to actually change Locales on-the-fly and still get the correct
language text. This is a great feature for anyone who has ever attempted simultaneous language
support in an application.

To convert your localized ApplicationResources.properties to UTF-8, you use the tool
named native2ascii. This tool is part of the JDK. This utility takes characters that are non-
Latin 1 and non-Unicode and makes them into Unicode-encoded characters. For example, if we
had a Greek version (we don’t in the sample application), you could run the command:

native2ascii -encoding UTF-8 ApplicationProperties_el.properties
ApplicationProperties_el.propertiesNew

then you’d rename the file ApplicationProperties_el.properties.

All the internationalized words have been converted to Unicode (UTF-8) standards, and
now the browser will be able to read it. See? It’s really not Greek after all. It is also possible to
use the <native2ascii> preprocess task to run this program directly from your ANT build.xml.
That way, you can convert source files maintained in a native operating system encoding to
ASCII, prior to compilation. For more information, you can find the various processing tasks
for ANT at jakarta.apache.org/ant/manual/index.html.

9.5 Formatted Messages

While it’s possible to have all of your name/value pairs defined in your PropertyResource-
Bundles, it is frequently required to allow for parametric replacement within message text.
This allows what amounts to a static text string to have dynamic content in it. Parametric
replacement is done by simply including an {x} for the parameter number, where x is a number
value. It is possible to have up to four parameters to a message.

For example, if we look at the name/value pair

database.load=Cannot load database from {0}

from our ApplicationResources.properties file, we see that the path specifying the database is
an argument for the dynamic value. In this example, we are using only one dynamic value. Then
it’s possible to include the parameter from the ActionForm validation method when creating a
new error message like

new ActionError("database.load",dbPath);
If you were accessing a message that had parameters from a JSP, the tag might look like
<bean:message key="database.load" arg0='default location'/>

The full set of features supported by formatted messages are documented in the
java.text.MessageFormat API Javadocs.

110 Chapter 9: Internationalizing Your Struts Application ®

9.6 The MessageResources Class

The MessageResource class is part of the org.apache.struts.util package. It provides a mecha-
nism so that you don’t have to worry about which ResourceBundle to use. By specifying a Locale,
and a message key, the MessageResource will retrieve the correct string for you. From an Action,
you can pass the HttpServletRequest parameter to the getResources(request) method call. This
will return the message resources for the current subapplication. You can then do a lookup on
the specific name you are interested in.

MessageResources messages = getResources(request);
String message = messages.getMessage("myMessage");

If you wanted to dynamically set the Locale for a user, you typically do it in an Action.

java.util.Locale locale = new java.util.Locale("es");
setLocale(request,locale);

This changes the user’s default locale (and language) to Spanish. The setLocale method of
Action basically just sets a session attribute called Action.LOCALE_KEY (found in the Action
class as a static string) to the locale you pass in.

9.7 Summary

Overall, there really isn’t all that much work to do in order to internationalize your application.
Most of the work is just translating the strings in your resource files. The real grunt work is
handled under the covers by the Struts framework.

chapter]0

Configuring, Testing, and
Rolling out Your Application

So, here we are nearing the end. We’ve gone through all the major components in Struts
and we've built all the components necessary for our sample application. I'd like to spend some
time now on rolling out your application and reviewing some things to take into account in a
production environment.

10.1 The WAR File

Web applications are typically built and assembled into web archive (WAR) files. These are
basically JAR (Java archive) files that contain all the classes, resource bundles, JSPs, and
configuration files necessary for a web container to run your application. Prior to the Servlet
API Specification v2.2, there was no set way to define your web application between server
platforms. This proved to be problematic in the sense of the “write once, run anywhere” Java
mantra, which turned into the “write once, rebuild to fit your web container, run anywhere”
Java mantra.

Web servers now accept a WAR in a standard format if they support the Servlet v2.2
specification or later.

A WAR file has an extension of .war. WAR files are handled specially by web applica-
tion containers so that it is extremely easy to deploy web applications. For a more detailed
discussion of the WAR format, see the Servlet 2.3 specification at www,jcp.org/aboutjava/
communityprocess/final/jsr053/.

The top-level directory of your web application hierarchy, also called the document
root of your application, is where the HTML files and JSPs are placed. The context path is
where the application actually lives on the server. So, for example, if the system administra-
tor assigns the application to the context path /cdmanager, then a request URI referring to
/cdmanager/index.html will retrieve the index.html file from that document root.

111

112 Chapter 10: Configuring, Testing, and Rolling out Your Application ®

When Tomcat is started, it automatically expands the WAR file into its unpacked form so
that it can be executed. For more information on other options for deploying applications on
Tomcat, see jakarta.apache.org/tomcat/tomcat-4.0-doc/appdev/deployment.html10.!

10.1.1 Setting Up the WAR Layout

It makes sense to use the required file structure in your WAR file. If you take a look at the ANT
build.xml file that accompanies our sample application, you will see that I have a prepare.dist
target that copies all the files from our development structure into the defined WAR structure
to prepare for deployment. The structure is as follows:

m The document root. This becomes cdManagerSample because that is what our WAR file is
called. By default, Tomcat will deploy WAR files under the same name as the WAR file.

m (Client files and images. The JSPs (and HTML files if there are any), along with other files
that must be visible to the client browser (such as JavaScript, stylesheets, and images
necessary for the application), are under the document root. Sometimes, depending on
how large and complicated your application is, it makes sense to break down a directory
structure. For example, you may want to put all JSPs in one directory, all images in
another, etc.

= /WEB-INF/web.xml. The Web Application Deployment Descriptor is the XML file describing
the Servlets and other components that make up the application. This is the same web.xml
file that we discussed in detail in Chapter 6.

m /WEB-INF/classes/. This directory contains any Java class files and resources required for
the application. This can include JAR files of both Servlet and non-Servlet classes. Java
package hierarchy structure must be maintained in the class directory; otherwise, you
will get ClassNotFound exceptions. This is not a problem if you follow the prepare.dist
target in the provided build.xml file.

m /WEB-INF/lib/. This directory contains JAR files that contain Java class files and resources
required by the application, such as third-party class libraries or JDBC drivers. This is
where the Struts. jar lives.

The files in the WEB-INF/classes and WEB-INF/1ib directories are automatically visible to
your web application. There is no need to alter the system CLASSPATH for classes that might
be accessed from other parts of your web application if they run in the same context.

While JSPs can reside in the document root, sometimes it makes sense to place them in
the WEB-INF directory of the application. Most, but not all, web containers provide security for
files below the WEB-INF directory. Having the files located here prevents direct access from a
browser client. What this means is that the pages are only accessed from Actions. Forwards
from the ActionServlet are allowed by the container. Then the security of the site is moved

1The Tomcat “manager” webapp lets you install and remove applications without restarting Tomcat.
Also, custom ANT tasks let you integrate these types of commands directly in your build scripts. See
a Tomcat 4.1.x test release for details.

B 10.3 Jar Files 113

from the presentation (i.e., having a security check in the JSP file) to the Controller. The one
thing to think about here is this. Your application should rarely if ever have direct access to a
JSP. All page accesses should always go through Actions anyway. If this is the case, then the
actual JSP name is never exposed to the user anyway, so it is unlikely that a client will access
the page directly.

10.2 Building to Deploy

When you are ready to test and deploy an application, it is quite easy. I've provided a target in
the ANT build.xml file with the sample application that is an all-inclusive target. Keep in mind
that my deploy target is for Tomcat. However, it includes the same steps you need to perform
for any other web container; you just might need to tweak a few things like directory names.
Take it and modify it to fit the exact needs of your project.

If you type “ant deploy” in the directory of your build.xml, the following will happen:

1. Any source files that have changed are compiled.

2. All classes, resource bundles and property files, JSP files, and the Struts.jar are copied
to fit the structure of the WAR file layout as described in the previous section.

3. The new WAR file is copied into the webapps directory.

4. The Tomcat work directory is deleted so that Tomcat recompiles any JSP file in the
application.

Note: Before doing a deploy, stop Tomcat. Otherwise, the current directory files are in
use and can’t be overwritten.

When you restart Tomcat, it will recognize the WAR file and expand it so that the context
becomes available in the container. Just enter the URL of your Struts application. This would
be the same name as the WAR file, minus the .war extension.

So in our sample application, you access 127.0.0.1:8080/cdManagerSample if it was
running on your local server with the default Tomcat HTTP port. The IP address 127.0.0.1
can also be referenced as “localhost.” The welcome page displayed for the application is
determined in the web.xml associated with this application, in our case, index. jsp. That is the
<welcome-page> element we talked about earlier in our web.xml discussion.

10.3 Jar Files

There are a number of JAR files necessary for Struts 1.1. These include the various JARs
provided from Jakarta Commons. For the most part, you really don’t need to be concerned
about them as long as they are available to your application. All the necessary JAR files are
included in the Struts distribution. I've added all the appropriate JAR files to the CLASSPATH in
the sample application build.xml file so that you can see how to build a deployable application.
The Struts.jar gets a little bit more attention.

114 Chapter 10: Configuring, Testing, and Rolling out Your Application ®

10.3.1 The Struts.jar File

You may have noticed that the Struts.jar file is added into your application WAR file in the
deploy build target. It's necessary to have a copy of the Struts.jar file packaged with each
application and not in the CLASSPATH of your application server. It might be tempting to put
the Struts.jar in a shared location that isn’t necessarily on the CLASSPATH of the application
server but is accessible to each web application through a symbolic link, but this won’t do. The
reason it won’t do is a class loader issue.

The classes in the Struts. jar instantiates your Action and Form classes. If the Struts. jar
is in the WEB-INF/1ib directory of your application, it will find the classes of your application.
If the Struts.jar is located somewhere else in the CLASSPATH, then the classes in your web
application will not be found by the Struts.jar and you will have ClassNotFound exceptions
being thrown.

10.4 Using Logging for Debugging

We have all had our share of System.out.println ("Yet Another Log Message") in our code.
Inserting log statements into code is an easy and fairly painless way to debug it. While
println statements don’t fall into the glamorous category, they are a very useful tool for
debugging. However, it becomes increasingly difficult to debug multithreaded and distributed
applications—logging can help.

Although there can be some drawbacks, like performance hits, to an application, I'm of
the opinion that the amount of CPU time spent in log statements at runtime is rarely of great
concern in the overall performance of the system. Because logging systems are usually high-
performance components, there are likely other areas in your application that are chewing up
more CPU time than the log statements are. It is also possible to alter log levels at runtime so
that logging messages can be increased or decreased.

Struts 1.1 uses the Jakarta Commons Logging package from the Components Repository.
You can find more information on Logging at jakarta.apache.org/commons/logging.html. The
Logging package provides a wrapper around any logging API that you might choose to use. This
is convenient because using the Logging API removes both compile and runtime dependencies
on any one Log package. You can then use whatever implementation you like without having
to worry about going back and redoing all of your logging statements. Having to do that is a
monumental pain.

The Logging package has an intelligent discovery mechanism (the concrete subclass
of LogFactory called LogFactoryImpl), and uses the following algorithm to select the logging
implementation to instantiate. First, it will try to use a factory configuration attribute named
org.apache.commons.logging.Log to identify the requested implementation class. If that isn’t
available, it will check to see if Log4] (jakarta.apache.org/log4j/docs/index.html) is and, if it is,
will return an instance of org.apache.commons.logging.impl.Logé4JCategoryLog.

If Log4] is not available, it will check to see if the JDK 1.4 is being used and will return an
instance of org.apache.commons.logging.impl.Jdk14Logger. JDK 1.4 is the first release to have
Logging classes built into it.

B 10.4 Using Logging for Debugging 115

If all three of the previous steps fail, then an instance of org.apache.commons.logging.
impl.NoOpLog is returned. The NoOpLog class will be returned, and basically the log messages
are just thrown away.

You are able to log according to six log levels.

trace (the least serious)
debug
info

warn

V1w

error
6. fatal (the most serious)

If using Log4] as your implementation, you can also turn logging completely off, or you can
log all messages regardless of their level.

This book used Log4] as the logging implementation in our sample program primarily
because it’s another valuable open source project that deserves credit and because it is widely
popular. Log4] can be found at jakarta.apache.org/log4j/docs/index.html. One thing to make
sure of if you are using Log4] is that your configuration is loaded before your ActionServlet
is loaded. This is done by initializing Log4] before Struts actually starts. So in the web.xml file
we have

<servlet>
<servlet-name>log4j-init</servlet-name>

<servlet-class>cdmanager.Log4jInitServlet</servlet-class>
<init-param>
<param-name>log4j-init-file</param-name>
<param-value>/WEB-INF/log4j.properties</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

Then the sample servlet (which is also available on the Log4] site) looks like

package cdmanager;

import javax.servlet.http.*;

import java.io.PrintWriter;

import java.io.IOException;

import org.apache.log4j.PropertyConfigurator;

public class Log4jInitServlet extends HttpServlet {
public void init() {

String prefix = getServletContext().getRealPath("/");
String file = getInitParameter("log4j-init-file");

116 Chapter 10: Configuring, Testing, and Rolling out Your Application ®

if (file != null) {
PropertyConfigurator.configure(prefix+file);
}

}
public void doGet(HttpServletRequest req, HttpServletResponse res) { }

}

Then we include a configuration file that is used by Log4] for setting the log levels, appenders,
and patterns to use. This configuration file, 1og4j.properties, is placed in the WEB-INF of our
application. You can view the log4j.properties file in the CD Manager sample application for
more details.

Actually writing a message to a log is a matter of having the proper imports in your class,
such as

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

and then creating a Log instance. The instance can be associated with the class by doing the
following:

private Log log = LogFactory.getLog(this.getClass().getName());

Because I have Log4] available on my system, the Log instance I receive is of org.apache.
commons.logging.impl.Log4JCategoryLog because of the discovery mechanism mentioned ear-
lier. It is simply a matter of deciding when and what you want to log. As a sample in Logon-
Action.java, I have various trace and debug statements. A debug statement to log user and
session information looks like

if (log.isDebugEnabled()) {
log.debug("LogonAction: User
+ "' logged on in session

+ user.getUserName()
" + session.getId());
}

Since this isn’t a Log4] book, I wanted to give you the pieces that are used for logging,
how to accomplish logging for debugging, and a taste of how to use logging in our sample
application.

10.5 Unit Testing

Testing, as well as having a test suite, is an important piece in the overall success of your
project. There are many times when I've heard, “I don’t have time to write test cases” from
engineers. The fact of the matter is, you don’t have time not to write test cases. Having an
available test suite can help identify problems in the code before an application is running in
production. It also makes it quick and relatively easy to run regression tests when new features
are added to your application.

Testing server-side applications requires some planning in order to test correctly. One
of the easiest tools to learn, and biggest bang for the buck (since it's free), is JUnit, an

B 10.5 Unit Testing 117

open source project that can be found at www.junit.org. Cactus is another Jakarta project
that provides server-side unit testing and is built on top of JUnit. Cactus can be found at
jakarta.apache.org/cactus/index.html. If you are looking for a Struts-specific testing environ-
ment, visit strutstestcase.sourceforge.net. StrutsTestCase combines support for testing Struts
components using either a mock object approach or an in-container approach using the Cactus
framework. I'm using JUnit in our sample application just because all the other frameworks are
based on it. You can read up more on Cactus or StrutsTestCase to see if those fit your needs
better. But they all will look fairly similar in approach to JUnit.

JUnit puts itself into the slightly extreme programming (XP) paradigm. While I really
don’t want to preach one type of development method over another, writing test cases often
and running them often is beneficial, regardless of which method you subscribe to. Though
this book isn’t about teaching you how to write test cases, I thought that it would be helpful
to show you how you can write test cases quickly and easily to test your Struts application.

Test cases should become part of your source tree. As you build, edit, and refine your
source code, you should also be updating your test cases. Using JUnit is simple. You create a
test class that mimics your package and class files. So we have

package cdmanager.actions;

import junit.framework.Test;

import junit.framework.TestCase;

public class TestLogonAction extends TestCase

This would be the test case that tests the LogonAction in our cdmanager.actions package. All
the unit tests for LogonAction are maintained in TestLogonAction. All the tests are collectively
known as a suite. A suite is built dynamically by the JUnit framework using Java Reflection.
By returning the JUnit Test object from the suite() method call, all the methods contained
in this class that begin with “test” are added to the suite and are executed. The suite method
looks like

public static Test suite()

{
// All methods starting with "test" will be executed in the test suite.
return new TestSuite(TestLogonAction.class);

}

So basically all of your Test classes follow a similar structure, and you just have to keep
adding test cases to the file. The suite is executed by the TestRunner program that is provided
with JUnit. You can run TestRunner with either a text, AWT, or Swing GUI by simply running
the command

java junit.swingui.TestRunner cdmanager.actions.TestLogonAction

Of course, you need to make sure that your CLASSPATH is set up correctly. You could
have included

java -cp .\build\classes;.\lib\junit.jar

118 Chapter 10: Configuring, Testing, and Rolling out Your Application ®

on the command line if you were running the TestRunner from the main directory for the
CD Manager application. Following that build structure, the location of your test file classes
(.\build\classes) as well as the junit. jar file are specified so that you can execute your tests.

We won’t go into all the details of how to write proper test cases, but a test case sample is
included with the CD Manager application, along with a TestRunner script to get you started.
Refer to any of the resources listed on www,junit.org for more thorough references. And for
more details on the various features available in JUnit, visit their website and download the
latest version.

10.6 Maintaining Your Application

Once an application is built, tested, and deployed, you're done, right? Well, as most of us know,
that is rarely the case. One of the success characteristics I consider necessary to determine how
well you built a system is how easy it is to maintain. Elegant solutions are those that require
the smallest amount of maintenance. This includes how fast a new engineer comes up to speed
on an entire application, how quickly requirement changes and enhancements can be made to
the existing application, and how long your Objects live before they are bulging at the seams
because of poor design decisions.

10.6.1 Keeping Up with the Joneses

There are constant improvements being made to the framework and work going on in the
development community when you're working with an open source project such as Struts.

A major strength of the Struts framework is that there is a high degree of backward
compatibility to previous Struts releases. This plays an important role as more and more
production applications roll out using Struts as their MVC framework. It’s best to keep up
with the mailing list to see what bugs are being fixed and what features are being added.

The Struts framework was the brainchild of Craig R. McClanahan who is also on a
number of Java-related expert groups at Sun Microsystems. The experiences of the Struts user
community and the features present in Struts that serve the community well for the MVC model
mean that many of the Struts features have the potential to influence and possibly become part
of the Java standards being worked on as part of the Java Community Process (JCP).

In the same sense, standards have the ability to effect how features get juggled into Struts
releases. For example, many of the custom tags available in the JavaServer Pages Standard Tags
Library (JSTL) could very well, and should, be used within the Struts framework. You can find
more information at jcp.org/aboutjava/communityprocess/review/jsr052/index.html.

Another example is the JavaServer Faces (JSF), a proposed standard set of components
for user interfaces. This includes handling events, validation, and navigation. JSF is another
example of new technology that can, and probably will, play a role in the Struts framework
and how it grows. Therefore, as we move forward it might make sense to rev your applications
when appropriate so that they are taking advantage of the most current features available. It
looks as if there will be an integration library coming soon that lets you use JSF and Struts 1.1

® 10.7 Summary 119

together. Tighter integration between the two will occur in a later version of Struts. Keep up
to date on JSF at jcp.org/jsr/detail/127.jsp.

Many people follow the “if it ain’t broke, don’t fix it” model, and that’s fine. Sometimes
there really is no need to stir the pot if everything is working and the business requirements
are being met. However, that doesn’t mean that you shouldn’t be aware of what the potential
of new features and fixes might provide to your development. When using open source, you
have access to the source code. So it is entirely possible to just check all the source code for
Struts into your own development source control system and never have to touch it again. But
the reality of it is this. We are all developers and we’re always looking for ways to improve
our applications and our skills. Keeping an eye on what’s coming down the pike is part of our
nature.

10.7 Summary

Chapter 10 covered how to take an application that has been built, package it up into a WAR
file so that it can be deployed, and then deploy it. We also looked at some common tasks such
as logging and unit testing and how to use them effectively. In addition, we also talked about
maintaining your application for the future.

As a final thought, there are a couple of projects taking place that could easily come into
radar view concerning Struts. The JSP Standard Tag Library as well as JavaServer Faces are
projects to keep an eye on in the future.

chapter]]

Additional Useful Struts Packages
and Extensions

In the preface of this book, I defined the 80%/20% rule that was used to determine what
was—and what wasn’t—relevant for inclusion in this book. While we've certainly covered lots
of useful features, I wanted to give you a feeling for some of the items that might fall into
the 20% part of the rule. Though there’s not a great deal of detail about how to use some of
these more advanced features, it’s presented as a sort of primer so that as you progress into
more sophisticated application development, you will have an understanding of what else is
available. Let’s start with Tiles.

11.1 Tiles

Tiles (formerly known as Components) is a framework added into the Struts 1.1 release under
the contrib folder. Tiles is completely focused on the V in MVC. Tiles is a more sophisticated
template engine than that provided in the Struts-template tag library. It is another example of
an implementation of the Composite View pattern that we talked about in the Struts-template
tag library. With Tiles you can do such things as

m Screen definitions that include inheritance

® Templating

m Layouts for common pages, menus, and portals

® Dynamic page building

m Reuse tiles

= [18N support for locale-specific loading

m Multichannels that allow for loading of tiles dependent on a key stored in the JSP session

121

122 Chapter 11: Additional Useful Struts Packages and Extensions ™

Basically, you define Tiles (or sections) of your pages as we did in the template example.
There might be a Tile for each section like title, header, content, and footer. The Tiles are then
assembled together to form a template. There is a library of common layouts that you can look
through located in the tiles/web/layouts directory. Because there is a strong resemblance to
the Struts-template tags, sometimes it is common to define the namespace of a template to
the tiles.tld. So the tag <template:put> might actually be referencing the custom tag defined
in the tiles.tld file.

Tiles are useful when building complicated web applications like portals or when trying
to do things such as layering titles vertically on top of one another. Tiles also use definitions
that are defined in an XML description file. This allows for a high degree of flexibility in terms
of screen definitions, centralized declarations, parameters, and other features. While an entire
chapter could be written on Tiles, it’s not in this book because it exceeds the 80% rule. I suggest
that if it is something that sounds like it would be useful to your project, you explore it in more
detail at www.lifl.fr/ dumoulin/tiles/index.html.

11.2 Validator

The Validation framework is now part of the Struts package structure and can be found in
org.apache.struts.validator. Why use the Validator framework? The answer is that Validator
makes life a bit easier when you have to deal with required fields, determining matches to a
regular expression, email, credit card, and date validation as well as server-side type checking.

This framework is based on the Commons Validator that can be found at jakarta.apache
.org/commons. The purpose is to perform server-side validations based on validation rules
located in the validation.xml. It is possible to add custom validations to this file. Rules can be
defined for different locales. It’s possible to store your specific validator rules in a separate file.
This is accomplished by setting the config-rules parameter in the ValidatorServlet contained
in the web.xml file. The standard file is available in the Struts dist directory and is called
validator-rules.xml.

Using this framework requires adding the ValidatorServlet to your web.xml file with
its appropriate configuration parameters and then extending org.apache.struts.validator.
action.ValidatorForm instead of org.apache.struts.action.ActionForm.

Validator is the first component to implement the new Plugln interface in Struts 1.1.
By supporting the init() and destroy() methods of Plugin, the ValidatorPlugin is notified
about application startup and shutdown events without having to be concerned with ex-
tending ActionServlet code. Plugins are configured in the struts-config.xml file by setting the
<plug-in> element. The example using Validator is

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathname" value="/WEB-INF/validator-rules.xml"/>
<set-property property="pathname" value="/WEB-INF/validation.xml"/>
</plug-in>

You can also add pluggable validators by adding a validation method signature to your
ValidatorAction class. For more details, reference the org.apache.struts.validator.util.
StrutsValidator class.

® 11.4 Commons Utilities 123

11.3 Uploading Files

Sometimes it is necessary to provide file uploads from a client to the server. Fortunately, the
grunt work was taken out of this task thanks to the org.apache.struts.upload package. This
package is helpful in dealing with multipart data and includes a number of classes to handle
various situations. Classes include

m BufferedMultipartInputStream, which implements buffering for an InputStream as well
as providing a reliable readLine method

m DiskMultipartRequestHandler, which is a MultipartRequestHandler that writes file data
directly to temporary files on disk

m MultipartIterator, which allows for reading the input data of a multipart request and
splitting it up into input elements

11.4 Commons Utilities

The Struts utilities package offers several families of classes to help solve those problems that
pop up over and over when building web applications. Most of the classes in this package do
not rely on the controller Servlet framework or the custom tag libraries, so they can be used
in general Java application programming. Because many of the Classes were so useful, as of
Struts 1.1, they were moved into the Jakarta Commons project. These include the Bean Utilities,
Collections, and Digester packages. We talked about the Logging packages and how to use them
in the previous chapter, so I won’t go into it again here, but just note that the Logging provided
in Struts actually comes from the Commons project.

11.4.1 Bean Utilities

org.apache.commons.beanutils components provide wrappers around the Java Reflection and
Introspection APIs. By using classes in the beanutils package, it is possible to access getter
and setter methods dynamically without compiled-in knowledge of the method names. These
classes are used with the custom tag libraries of Struts, so it makes sense that if you are
writing additional custom tags for your application, you might want to look further into what
is available in this package. Brief descriptions of the available classes at the time of this writing
are listed in Table 11.1.

11.4.2 Collection Utilities

The collections and comparator utility packages offer a plethora of classes that build upon the
extensive collections support introduced in the JDK 1.2. The functionality provided in these
packages is broken down into the following implementation categories:

m [ist
® Map

m Stack and queue

124 Chapter 11: Additional Useful Struts Packages and Extensions ™

Table 11.1: Classes available in commons Beanutils package.

Class Description

BeanUtils Populates JavaBeans properties via reflection

ConvertUtils Converts string values to objects of the specified class
MappedPropertyDescriptor Describes one mapped property

MethodUtils Focuses on methods in general rather than properties in particular
PropertyUtils Uses Java Reflection APIs to allow for generic property getter and

setter operations

Bag interface and implementations

m Adaptors

Utilities
» Transformation tools

There are 35 classes available, so they’re not all included in these pages. Suffice it to say
that it is worth the cup of coffee to peruse the available Javadocs to get familiar with what
these classes provide. Many of these classes can be directly applied to your server-side web
application development.

11.4.3 Digester

The digester package provides rules-based processing of XML documents. This is great for
reading configuration files so that Objects can be initialized correctly. What makes this
package useful is that you can do many of the things fairly simply that would otherwise
require more in-depth knowledge of DOM or SAX processing. This is accomplished by hav-
ing a Java object-mapping module that allows specifying rules when patterns in the XML are
recognized.

There are existing rules provided, and it is also easy to add your own. The digester pack-
age is used in our sample application in the DatabaseServlet to read the configuration database
file. The following code enables us to create a new Digester object, set some configuration set-
tings on the Digester itself, and then create a User object specific to our application that the
Digester sets the properties in based on the element values in the XML file. As demonstrated
by the use of the CdInfo object, this is used for nested elements as well. The input stream is
then parsed, and the XML to Objects mapping is completed with the appropriate values. The
lines of code to accomplish this are

BufferedInputStream bis = new BufferedInputStream(is);
Digester digester = new Digester();
digester.push(this);

digester.setDebug(debug);

B 11.6 Other Items of Interest 125

digester.setValidating(false);
digester.addObjectCreate("database/user", "cdmanager.User");
digester.addSetProperties("database/user");
digester.addSetNext("database/user", "addUser");
digester.addObjectCreate("database/user/cd", "cdmanager.CdInfo");
digester.addSetProperties("database/user/cd");
digester.addSetTop("database/user/cd", "setOwner");

digester.parse(bis);
bis.close();

This code is incredibly simpler, I can assure you, than setting up and parsing the XML using
either DOM or SAX.

A number of advanced features are available when using a Digester. These include
the ability to plug in your own pattern-matching engine, namespace-aware processing, and
the creation of RuleSets that encapsulate rules to be used in multiple applications. If you
are explicitly reading in any XML files into your applications and need to map them to the
appropriate Java Objects, the Digester is worth a look.

11.5 Workflow

In our sample application, we went through an example of how to create and use a wizard.
A wizard is a simple example of a workflow where there are Actions that must be completed
given certain conditions and in a certain order.

The workflow extension takes the notion of a state machine, which is basically what a
workflow is, and creates a framework around how to implement it. This extension can be found
in the Struts contrib folder. It is possible for workflows to be linear or branch, or to replace
other workflows. It really depends on what your business requirements are.

There are ways to identify what the previous, current, and next state should be in a
workflow, as well as how to determine primary and secondary workflows. This is done by
setting properties in the action defined in the struts-config.xml. If there is no previous or
next state, then the workflow ends and information that has been stored during the workflow
is acted upon or thrown away. Since a workflow spans multiple actions (like our wizard), any
attributes that were stored are automatically cleaned up when the workflow ends. There can be
any number of IworkFlowCleanupAction instances in the workflow context. Each instance has
its cleanup methods called when the workflow is completed. For more information, check out
the site at www.livinglogic.de/Struts/ .

11.6 Other Items of Interest

There is an ever-growing list of new extensions and tools becoming available for the Struts
framework. I'm sure that there will be new ones added by the time you read this. It is best to
frequently check the resources link on the Struts home page to keep abreast of the latest

126 Chapter 11: Additional Useful Struts Packages and Extensions ™

developments. However, there are a few that are worthwhile to point out here. You can
investigate on your own to see if there are any you can make use of.

In the Struts contrib folder, there is the Scaffold framework written by Ted Husted. Scaf-
fold included many useful samples and utilities that you can incorporate into your applications.
The Artimus Project (also written by Ted) is a news poster application that provides another
useful sample to walk through.

Expresso is another framework that integrates with Struts (as of Expresso 4.0) and adds
database-specific capabilities. Basically, it is a library of components that provides common
features used by web applications. If you need to build highly functional database applications,
it is a good place to start. Expresso provides such features as database-stored security, object
relational mapping, background job handling and scheduling, automated table manipulation,
database connection pooling, email connectivity, event notification, and caching, to rattle off
a few features. You can find Expresso details at www.jcorporate.com

11.7 Summary

There are a number of very useful extensions and packages that can be used in, or with, the
Struts framework. As you build more complicated and sophisticated applications, the power
of these extensions and packages will become more apparent.

11.8 Closing Thoughts

Congratulations! We have designed, built, debugged, tested, and deployed an application using
Struts 1.1. You now have the power to move forward and tackle some of the complicated
applications waiting to be built and do it faster than your co-workers who don’t know Struts.

Keep yourself up to date on what becomes available in the Struts world. There certainly
will be new and exciting features that will help us all. In fact, as you build your application,
if there are features you create that help you, they will probably help others. Give back to the
Struts community and consider incorporating your brainstorms into the Struts project code.

I hope that this book has increased your knowledge, decreased your ramp-up time, and
captured your attention insofar as the power of the Struts framework is concerned. Now go
put it all to good use and build yourself some cool applications.

appendixA

Struts 1.1 UML Diagram

Figure A.1 shows a complete UML diagram of the Struts 1.1 architecture. If you are not familiar
with UML notation, read through the resources provided in Appendix B concerning UML.

127

RequestProcessor
(from action)

Digester
(from digester)

ActionServlet MessageResources PropertyMessageResources
(from action) _— (from util) < (from util)
] o
All defined in struts-config.xml
0..* 0..* 0..* 0..*
ActionMappings ActionForwards Action ActionForm ValidatorForm

(from action)

(from action)

(from action)

(from action) <t

(from validator)

T

o

ActionMapping
(from action)

|

ActionForward
(from action)

DynaActionForm
(from action)

Lists Forwards

{

5 /

Zf

ValidatorActionForm
(from validator)

DynaValidatorForm
(from validator)

User-defined | \
Form \

User-defined
Action

Uses /0..*

0.* Throws

Business logic
helper classes

ActionException
(from action)

Figure A.1: Stuts 1.1 UML diagram.

ActionMessag
(from action)

es ActionErrors
<+ (from action)

i

i

(from action)

ActionMessage

ActionError
(from action)

8¢1

m wesderq TAN T°T sns v xipuaddy

appendixB

Web Resources

This appendix contains all the resources listed throughout the book, organized by topic. It can

be used as a quick reference guide so you can look for more information about a given subject
covered in this book.

B.1 Development Tools

Jjakarta.apache.org/ant/index.html
Jjakarta.apache.org/commons
jakarta.apache.org/struts
Jjakarta.apache.org/tomcat/index.html

Jakarta.apache.org/tomcat/tomcat-4.0-doc/appdev/deployment.html
www.mkp.com/practical/struts

www.mysql.com

B.2 Design Patterns

Jjava.sun.com/blueprints/enterprise/index.html

B.3 EJB

Jjava.sun.com/products/ejb/index.html
www.ejbnow.com

www.javaskyline.com

129

130 Appendix B: Web Resources ®|

wWww.precisejava.com

www.theserverside.com

B.4 JavaBeans

Java.sun.com/products/javabeans

B.5 JSP/Servlets

Jakarta.apache.org/taglibs/index.html
Jjava.sun.com/products/jsp/
Java.sun.com/products/jsp/docs.html
Jjava.sun.com/products/jsp/download.html
Java.sun.com/products/jsp/taglibraries.html#jstl
Jjava.sun.com/products/jsp/technical html#syntax
Jjava.sun.com/products/jsp/tutorial/TagLibrariesTOC.html
Java.sun.com/products/serviet/index.html
Jjecp.org/aboutjava/communityprocess/first/jsr053/serviet23_PFD.pdf
Jsptags.com
www.jcp.org/aboutjava/communityprocess/final/jsr053

www.servlets.com

B.6 Helpful Tools and Resources

Jjakarta.apache.org/cactus/index.html
Jakarta.apache.org/commons/collections.html
Jakarta.apache.org/commons/logging.html
Jakarta.apache.org/log4j/docs/index.html
Jjakarta.apache.org/struts/resources.html
Jjguru.com/faq/Struts
strutstestcase.sourceforge.net

xdoclet.sourceforge.net

B B.11 Struts Extensions

www.husted.com/struts
www. jamesholmes.com/struts/console

WWWw.junit.org

B.7 118N

Jjava.sun.com/docs/books/tutorial/il 8n

www.unicode.org

B.8 Logging and Testing

Jjakarta.apache.org/cactus/index.html
Jjakarta.apache.org/commons/logging.html
Jjakarta.apache.org/log4j/docs/index.html
strutstestcase.sourceforge.net

WWW.junit.org

B.9 MVC

Java.sun.com/blueprints/enterprise/index.html

Jjava.sun.com/blueprints/patterns/j2ee_patterns/model_view_controller

B.10 Sample Application

www.mkp.com/practical/struts

B.11 Struts Extensions

WWWw.jcorporate.com
www.lifl.fr/~dumoulin/tiles/index.html

www.livinglogic.de/Struts

131

132 Appendix B: Web Resources ®|

B.12 Struts Mailing List

Jakarta.apache.org/struts/resources.html#archives

struts-user-digest-subscribe@jakarta.apache.org

B.13 UML

www.rational.com/uml/gstart/index.jsp

www.togethersoft.com/services/practical_guides/umlonlinecourse

B.14 Upcoming Technologies

Jjava.sun.com/products/jsp/taglibraries.html#jstl
Jjcp.org/aboutjava/communityprocess/review/jsr052/index.html

Jjecp.org/jsr/detail/127.jsp

B.15 XML

www.w3.0rg/TR/2000/REC-xml-20001006

www.w3schools.com/xml/default.asp

Index

access paths, determining, 25
<action> element
attribute attribute, 69
forward attribute, 69-70
multipartClass attribute, 70
parameter attribute, 70
prefix attribute, 70
suffix attribute, 70
unknown attribute, 70
action mappings
ActionForward definition
within, 15
ActionServlet, 12
defined, 68
defining, 68-69
definition example, 14
logon, 83
scope property, 49
ActionErrors, 16-17, 38
adding, 37
collection of, 36
defined, 16
exception conversion to, 38
objects, 17
See also components
ActionForms, 8, 18
business logic and, 50
creating, 26, 45
defined, 18, 45
defining, 46-47
design guidelines, 50-51
instances, 45
instantiation, 38
as JavaBeans, 46
population, 46

properties, 18

pulling information from, 47

reset() method, 49-50

serializable, 45

storage, 51

summary, 58

validate() method, 47, 48-49

validation, 46

wizard scenario, 51-56

See also components
ActionForward, 15-16

defined, 15

definition within action

mappings, 15

instances, 14

name property, 15

object return, 34

path property, 16

redirect property, 16

See also components
ActionMapping, 13-15

defined, 13-14

defining, 26

properties, 14

use of, 15

See also components
ActionMessage, 17-18

attributes, 18

defined, 17

uses, 17

See also components
Actions, 12

checking for valid sessions,

35
creating, 32-33

custom, avoiding, 43
defined, 15, 31
design issues, 42-43
developing, 26-27
identifying, 26-27
importance, 43
instance creation, 32
instance variables and, 43
naming, 43
reusing, 43
routing control through, 35
scalability and, 42
thin, 43
thread-safe, 31
ActionServlet, 7
action mapping, 12
configuration, 12
controller, 60
defined, 11
distributed with framework,
12
instance, 11
subclass, 60
ANT build.xml file, 112
application model, 7-8
illustrated, 8
Model, 8
View, 8
application servers, 4-5
applications
business logic development,
27
data sources definition, 66-67
document root, 111
internationalizing, 105-110

133

134

Index m

applications (continued)
maintaining, 118-119
maintenance simplification,
77
requirements definition,
23-24
testing, 116-117
Artimus Project, 126

<bean:cookie> tag, 90
<bean:define> tag, 89-90
<bean:message> tag, 91
<bean:write> tag, 90-91
beanutils, 47, 123
BufferMultipartInputStream,
123
business logic
ActionForms and, 50
development, 27
buttons
done, 55
submit, 54, 55, 88

Cactus, 117

collection
errors, creating, 55
manipulation, 94-96
utilities, 123-124

components, 11-19
Action, 15
ActionError, 16-17, 36, 38
ActionForm, 18, 46-51
ActionForward, 15-16, 34
ActionMapping, 13-15, 26
ActionMessage, 17-18
ActionServlet, 11-12, 60
Model, 12-18
View, 18

configuration files
building, 28-29
common services, 72-73
declaration, 73
sample, 73

controller, 7
ActionServlet, 60
Servlet, 7, 12
See also Model-View-

Controller (MVC) pattern

<controller> element
attributes, 72
configuring, 71-73
defined, 71

custom tag libraries, 3-4, 79-103
declaring in JSP, 65
defined, 3-4

defining, 65

information, 4

sources, 77

Struts-bean, 79, 88-91
Struts-html, 79, 81-88
Struts-logic, 79, 91-96
Struts-nested, 79, 97-100
Struts-template, 79, 100-103
summary, 103

working with, 79-103

See also tags

data sources
accessing, 67
defining, 66-67
MySQL database, 66
debugging
logging for, 114-116
web.xml file parameters, 62
work directory and, 5
declarative exception handling,
39-40
design guidelines
ActionForms, 50-51
Actions, 42-43
development plan, 21-29
access paths, 25
ActionForms creation, 26
ActionMappings definition, 26
Actions development, 26-27
applicability identification
and, 22
application business logic
development, 27
application requirements,
23-24
build, test, deploy, 29
configuration files, building,
28-29
JSP creation, 27-28
overview, 21
premise, 21-22
screen requirements, 24
steps, 23, 29
summary, 29
digester package, 124-125
advanced features, 125
defined, 124
use of, 124
DiskMultipartRequestHandler,
123
Document Type Descriptor
(DTD), 4, 59
DynaActionForms, 57-58
advantages, 58

attributes, 57-58

defined, 45, 57

definition of, 57

properties, 58

subclass, 58

validation, 58
DynaBean, 57
DynaValidatorActionForm, 58
DynaValidatorForm, 58

Enterprise JavaBeans (EJBs)
from Action classes, 5
containers, 4, 5
support, 4
web resources, 129-130

errors
collection, creating, 55
handling sequence diagram,

storing, 36
working with, 84
exception handling
declarative, 39-40
global, 39
JSP, 38
exceptions
converting, to ActionErrors,
38
matching, to exception
handlers, 40
tags throwing, 80
trapping, 38
wrapping, 40
execute() method, 12, 14, 18,
33-35, 49
abstract in base class, 33
calling, 33
declaring, 32
execution steps, 35-38
first step, 35-36
flavors, 34
Expresso, 126
eXtensible Markup Language
(XML), 4, 132
Extreme Programming (XP)
paradigm, 21

FastHashMap, 15
file uploads, 123
fine-grained objects, 45
form Beans
defining, 67
sample, 67
wizard, 68-69
See also JavaBeans

formatted messages, 109
form-related tags, 82-83
attributes, 83
specification, 83
See also Struts-html
forwards
from execute() method
return, 68
global, 67-68
local, 69
number of, 69
redirects vs., 68

getChild() method, 97

global forwards
advantages, 67
defined, 67
defining, 67-68
redirects vs., 68

<html:base> tag, 85
<html:errors> tag, 84
<html:messages> tag, 84-85

indexed references, 81
initialization parameters, 62-63
internationalization, 105-111

locale, 106

summary, 110

tutorial, 105

UTF-8, 106, 109

web resources, 131

word conversion, 109
isSessionValid method, 35-36
isTokenValid() method, 41-42

Jakarta Commons
Cactus, 117
JAR files, 113
libraries, 9
Logging package, 114
Jar (Java archive) files, 111,
113-114
Jakarta Commons, 113
Struts.jar, 114
Java Naming and Directory
Interface (JNDI), 33
Java Virtual Machine (JVM), 31
JavaBeans
accessing, 2-3
form, 67, 68-69
scope, 2
specification, 2
Struts use of, 3
utilities, 123

web resources, 130
See also specific Beans
JavaServer Faces (JSF), 118
JavaServer Pages (JSP), 2-4
accessed, 5
component model, 2
container, 4
creating, 27-28
defined, 2
definitions, 28
development background, 3
in document root, 112
exception handling, 38
library declaration in, 65
object scopes, 3
prefixes, 77
purpose, 75
setting up, 76-77
Struts-enabled, building,
75-78
syntax reference, 75
taglib directive, 76
web resources, 130
wizard implementation, 51
.jsp file, 53
JSP Standard Tag Library (JSTL),
76,79,118
JUnit, 117-118

locale, 106

default, changing, 108, 110

setting, forcing, 106

See also internationalization
Locale class, 105
Log4], 114-116

availability, 114

configuration file, 116

using, 115
Logging, 114-116

defined, 114

intelligent discovery

mechanism, 114

Log4], 114-116

See also Jakarta Commons
<logic:forward> tag, 94
<logic:iterate> tag, 94-96

attributes, 95

collection, 94-95

sample use, 96

See also Struts-logic
<logic:match> tag, 93
<logic:nomatch> tag, 93
<logic:notPresent> tag, 95
<logic:present> tag, 95
<logic:redirect> tag, 93-94

135

B Index

Logon screen
French, 107
illustrated, 87
Spanish, 108

maintenance, 77, 118-119
MessageResource class, 110
messages
for confirmations, 85
displaying, 86
formatted, 109
working with, 84-85
methods
execute(), 12, 14, 18, 32,
33-35
forward(), 12
getChild(), 97
getFoo(), 80
isSessionValid, 35-36
isTokenValid(), 41-42
performAction(), 32
process(), 45
processPreprocess(), 73
reset(), 49-50
saveToken(), 42
setFoo(), 80
setServlet(), 32
validate(), 12, 16, 18, 47,
48-49
Model, 6, 7
application model, 8
components, 12-18
defined, 6
See also Model-View-
Controller (MVC) pattern
Model-View-Controller (MVC)
pattern
advantage, 5
controller, 7, 12, 60
defined, 5
general flow, 6-7
Model, 6, 7, 12-18
overview, 6
View, 7, 8, 18
web resources, 131
MultipartIterator, 123
MyForm bean, 57
<nested: form> tag, 98-99
<nested:iterate> tag, 98
<nested:nest> tag, 97

nested references, 81
nested tags, 97

136

Index m

objects
ActionError, 17
ActionForward, 34
fine-grained, 45
scopes, 3

pages
creating, with template
structure, 101-103
defining Tiles (sections) of,
122
layout, 102
performAction method, 32
Plugins
class implementation of, 73
defined, 73
defining, 73-74
module configuration, 73
presentation location, 93-94
println statements, 114
process() method, 45
processPreprocess() method,

PropertyResourceBundle, 107

ramp-up time, 22
Rational Unified Process (RUP),
21
redirects, forwards vs., 68
references
indexed, 81
nested, 81
property, 80-81
request scope, 50, 52
RequestProcessor, 71, 73
reset() method, 49-50
default implementation, 50
versions, 49
ResourceBundles, 107-109
default, 108
defined, 107
saveToken() method, 42

Scaffold framework, 126
scope

request, 50, 52

session, 49, 50

wizardForm, 53
screens

access paths determination,

25

requirements definition, 24
Servlet mapping, 63-64

defined, 63

example, 64

URL pattern, 63
Servlets
controller, 7, 12
defined, 3
information, 3
web resources, 130
session scope, 49, 50
Struts
applicability, 22
backward compatibility, 118
configuring, 59-74
defined, 1
development plan, 21-29
extensions, 131
introduction, 8-9
JavaBean use, 3
mailing list, 132
new features, 9
technologies, 1
UML diagram, 127-128
workflow extension, 51
Struts applications
migrating, 9
running, 5
Struts Console
defined, 28-29
information, 29
Struts. jar file, 114
Struts-bean, 79
<bean:cookie> tag, 90
<bean:define> tag, 89-90
<bean:message> tag, 91
<bean:write> tag, 90-91
defined, 79
reference, 89
tag attributes, 89
tag types, 88
tag uses, 88-89
using, 88-91
See also custom tag libraries
struts-config.xml file, 14, 16,
18, 28, 40, 46, 66-74
Action attributes, 69-71
action mappings definition,
68-69
<controller> configuration,
71-73
data sources definition, 66-67
definition areas, 66
form Bean definitions, 67
global forwards definitions,
67-68
Plugin definition, 73-74
Struts-html, 79
defined, 79

ease of use, 81

form-related tags, 82-83

<html:base> tag, 85

<html:errors> tag, 84

<html:messages> tag, 84-85

reference, 82

tag usage, 81

tags functionality, 81

using, 81-88

See also custom tag libraries
Struts-logic, 79

comparison tags, 92-93

defined, 79

<logic:forward> tag, 94

<logic:iterate> tag, 94-96

<logic:match> tag, 93

<logic:nomatch> tag, 93

<logic:notPresent> tag, 95

<logic:present> tag, 95

<logic:redirect> tag, 93-94

reference, 92

tag functionality, 91

tag types, 91

using, 91-96

See also custom tag libraries
Struts-nested, 79

comparison tags, 97

defined, 79

<nested:form> tag, 98-99

<nested:iterate> tag, 98

<nested:nest> tag, 97

parent tags, 97

tag types, 97

using, 97-100

See also custom tag libraries
Struts-template, 79

defined, 79

reference, 100

tag types, 100

<template:get> tag, 100

<template:insert> tag,

100

<template:put> tag, 100

using, 100-103

See also custom tag libraries
subapplications, 60-62

advantages, 60-61

defined, 60

defining, 61

environment, using, 62

identification prefix, 61

instances, 62

use specification, 61-62
substring matching, 93
Synchronizer Token pattern, 41

tag library descriptor (TLD) file,
65,77
<taglib> element, 76
tags, 7
availability, 76
<bean:cookie>, 90
<bean:define>, 89-90
<bean:message>, 91
<bean:write>, 90-91
comparison, 92-93
form-related, 82-83
<html:base>, 85
<html:errors>, 84
<html:messages>, 84-85
<logic:forward>, 94
<logic:iterate>, 94-96
<logic:match>, 93
<logic:nomatch>, 93
<logic:notPresent>, 95
<logic:present>, 95
<logic:redirect>, 93-94
nested, 97
<nested:form>, 98-99
<nested:iterate>, 98
<nested:nest>, 97
property attribute support,
80
ready to use, 78
<template:get>, 100
<template:insert>, 100
<template:put>, 100
throwing exceptions, 80
See also custom tag libraries
technology, 1-5
custom tag libraries, 3-4
JavaServer Pages (JSP), 2-4
overview, 2
reason for using, 21
Servlets, 3
upcoming, 132
web/application servers, 4-5
XML, 4
<template:get> tag, 100
<template:insert> tag, 100
template.jsp, 101, 102
<template:put> tag, 100
templates
advantages, 102
for applications with different
client types, 103
page creation with, 101-103
testing, 116-118, 131
TestRunner, 118
Tiles, 121-122
defined, 121

defining, 122

definition usage, 122

functions, 121
tokens

handling, 41-42

synchronizer, 41
Tomcat

defined, 5

deploy and, 113

information, 5

restarting, 113

WAR file expansion, 112

UML
diagram, 127-128
web resources, 132
Unicode Transformation Format
(UTEF-8), 106, 109
Uniform Resource Identifier
(URI), 77
unit testing, 116-118

validate() method, 12, 16, 18
ActionForm, 47, 48-49
default implementation, 49
example, 48
“true” value, 48, 55

validation.xml, 58

Validator, 122

ValidatorPlugIn, 58, 74

value comparisons, 92-93

View
application model, 8
components, 18
defined, 7
See also Model-View-

Controller (MVC) pattern

WAR file, 111-113
automatic expansion of, 112
defined, 111
extension, 111
layout, 112-113

web resources, 129-132
design patterns, 129
development tools, 129
EJB, 129-130
helpful tools, 130-131
internationalization, 131
JavaBeans, 130
JSP/Servlets, 130
logging/testing, 131
MVC, 131
sample application, 131
Struts extensions, 131

137

B Index

Struts mailing list, 132
UML, 132
upcoming technologies, 132
XML, 132
web servers, 4-5
web site, this book, 9
web.xml file, 5, 12, 28, 59-66
advanced application
elements, 66
custom tag libraries, 65
debugging parameters, 62
elements, 59
information, 60
initialization parameters,
62-63
<load-on-startup> parameter,
63
reading of, 60
Servlet mapping element,
63-64
subapplications, 60-62
validate parameter, 62
welcome file list, 64-65
<welcome-file-list>, 64-65
defined, 65
elements, 64
example, 65
wizardForm, 54, 56
wizards
currentStep, 54, 55, 56
design, 52
field display, 53, 54
form Bean, 68-69
implementation, 51
logic tags, 54
n-step, 51
scenario, 51
second page, 54-55
step processing, 52
structure, reasons for using,
52
two-step, 51
variations, 56-57
workflow
defined, 125
extension, 125
See also wizards

XDoclet, 28
XML, 4
defined, 4
Document Type Descriptor
(DTD), 4, 59
information, 4
web resources, 132

MORE

Practical Guides
from MORGAN KAUFMANN PUBLISHERS

J D B | Practical Guide for IDBC
| Java Programmers

Practical Guide for Java Programmers

Gregory D. Speegle, Baylor University, Waco, TX

This easy-to-use book consists of a focused project-oriented tutorial for practitioners who
want to learn JDBC quickly and contains pointers to the JDBC API reference material
throughout. Where other books on the topic don't have an instructional component or
contain too much information outside the scope of JDBC, this concise book provides the
essentials one needs to know to get up and running with programming using JDBC.

| Gregory D. Speegie
ﬁ - ISBN 1-55860-736-6, 130 pages
e va Java
Practical Guide for Programers Practical Guide for Programmers

Michael Sikora , Independent Consultant

As businesses move away from client server systems to developing multi-tiered
Web-based systems, programmers will find that learning Java will be a requirement for
their skill sets. This is a perfect supplement for students who need to get up to speed
quickly on the basics of Java programming and for those programmers interested in
switching to Java. It covers the latest version of Java (1.4).

ISBN 1-55860-909-1, 150 pages, December 2002

TCP/IP Sockets in Java

Practical Guide for Programmers

Kenneth L. Calvert, University of Kentucky, Lexington, KY; and

Michael J. Donahoo, Baylor University, Waco, TX

Much like its successful companion volume, which focused on sockets programming

in C, this easy-to-use book consists of a concise tutorial with examples and reference

material that help readers learn and practice specific TCP/IP socket programming

Yo . s techniques. As a result, readers are able to grasp the practical applications of using
the TCP/IP protocol and use this understanding as a springboard for more advanced

assignments, including multimedia protocols.

ISBN 1-55860-685-8, 140 pages

TCP/IP SOCKETS IN JAVA]

Practical Guide for Progra

The Practical Guide Series

®
M <

MORGAN KAUFMANN PUBLISHERS

Email: orders@mkp.com
Phone: 800.745.7323/407.345.3800
Fax: 800.874.6418/407.345.4060

AN IMPRINT OF ELSEVIER SCIENCE

AMSTERDAM BOSTON LONDON NEW YORK
OXFORD PARIS SAN DIEGO SAN FRANCISCO

Visit us on the Web at www.mkp.com

